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Uniform congruence counting for
Schottky semigroups in SL2.Z/

By Michael Magee at New Haven, Hee Oh at New Haven and Dale Winter at Princeton

With an appendix by Jean Bourgain at Princeton, Alex Kontorovich at New Brunswick
and Michael Magee at New Haven

Abstract. Let � be a Schottky semigroup in SL2.Z/, and for q 2 N, let

�.q/ WD ¹
 2 � W 
 D e .mod q/º

be its congruence subsemigroup of level q. Let ı denote the Hausdorff dimension of the limit
set of � . We prove the following uniform congruence counting theorem with respect to the
family of Euclidean norm balls BR in M2.R/ of radius R: for all positive integer q with no
small prime factors,

#.�.q/ \ BR/ D c�
R2ı

#.SL2.Z=qZ//
CO.qCR2ı��/

as R!1 for some c� > 0;C > 0; � > 0 which are independent of q. Our technique also
applies to give a similar counting result for the continued fractions semigroup of SL2.Z/, which
arises in the study of Zaremba’s conjecture on continued fractions.

1. Introduction

Let SL2.R/ act on R [ ¹1º by Möbius transformations. We say that the collection of ele-
ments g1; : : : ; gk 2 SL2.R/, k � 2, is a Schottky generating set if there exist mutually disjoint
compact intervals I1; : : : ; Ik; J1; : : : ; Jk in R such that gi maps the exterior of Ji onto the inter-
ior of Ii for each 1 � i � k. We call a semigroup � � SL2.R/ Schottky if it is generated by
some Schottky generating set as a semigroup. By the ping-pong argument, Schottky semigroups
are necessarily discrete and free. Schottky semigroups are ubiquitous in SL2.R/; for instance,
for any hyperbolic elements h1; h2 2 SL2.R/ with no common fixed points on R [ ¹1º, the
pair hm1 ; h

m
2 forms a Schottky generating set for all sufficiently large m.
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When � is a semigroup in SL2.Z/ and q 2 N, the congruence subsemigroup of � of
level q is defined by

�.q/ WD ¹
 2 � W 
 D e mod qº:

The main aim of this paper is to study a congruence lattice point counting problem
for �.q/ in a Schottky semigroup � � SL2.Z/ with a uniform power-savings error term. For
R > 0, consider the ball of radius R with respect to the Frobenius norm:

BR WD

´ 
a b

c d

!
2 SL2.R/ W

p
a2 C b2 C c2 C d2 < R

µ
:

The following is a simplified version of our main theorem (see Theorem 11 for a more refined
version):

Theorem 1. If � is a Schottky semigroup of SL2.Z/, there existQ0 2 N, c� > 0,C > 0

and � > 0 such that for all q 2 N with .Q0; q/ D 1,

#�.q/ \ BR D c�
R2ı

#SL2.Z=qZ/
CO

�
qCR2ı��

�
;

where ı > 0 is the Hausdorff dimension of the limit set of � .

The limit set of � is the set of all accumulation points of an orbit �:o in R [ ¹1º.

Remark. (1) When � is a Schottky subgroup of SL2.Z/, the analogous result to
Theorem 1 was proved by Gamburd [9] for ı > 5=6, by Bourgain–Gamburd–Sarnak [4] for
ı > 1=2 and by Oh–Winter [15] for any ı > 0. The last two results are restricted to the moduli
condition of q square-free. The counting result of Oh–Winter is deduced from [13] based on
the uniform exponential mixing of the geodesic flow for the congruence covers of a Schottky
surface, and hence does not apply to the semigroup counting.

(2) So the novelty of Theorem 1 lies in the treatment of a Schottky semigroup and the
uniformity of the power-savings error term for all moduli q (with no small prime factors).
The extension to the arbitrary moduli q case relies on the new technology that appears in the
Appendix by Bourgain, Kontorovich and Magee.

(3) We also remark that for fixed q, Theorem 1 follows from the work of Naud [14] in
this generality. We refer to [4] for more backgrounds on earlier related works.

Our methods also apply to a congruence family of semigroups related to continued frac-
tions and Diophantine approximation. Let A be a finite set of at least two positive integers.
Define GA to be the subsemigroup of GL2.Z/ generated by

ga WD

 
0 1

1 a

!
; a 2 A:

We define the continued fractions semigroup �A as follows:

�A WD GA \ SL2.Z/;

in other words, �A is a semigroup generated by ¹gaga0 W a; a0 2 Aº. The continued fractions
semigroup �A is not a Schottky semigroup; however the methods of proof of Theorem 1 apply
as well.
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Theorem 2. Theorem 1 also holds for the continued fractions semigroup �A.

In order to explain the relation of �A with continued fractions, we set

Œa1; : : : ; al ; : : : � WD
1

a1 C
1

a2 C
: : :

1

al C
: : :

for any sequence of ai 2 N.
Write

RA WD ¹Œa1; : : : ; ak� W k 2 N; ai 2 A for all iº

for the set of approximants to CA; and DA for the set of denominators of reduced elements
of RA, that is,

DA WD

²
d W

b

d
2 RA for some b coprime to d

³
:

For an integer A 2 N, we write DŒA� DD¹1;2;:::;Aº. In [19], Zaremba made the following
conjecture, motivated by applications to numerical analysis.

Conjecture 3 (Zaremba). There is some absolute A 2 N such that DŒA� D N.

Observe that

b

d
D Œa1; : : : ; ; ak�

if and only if  
0 1

1 a1

! 
0 1

1 a2

!
: : :

 
0 1

1 ak

!
D

 
? b

? d

!
:

This yields the relation

DA D ¹h
.0; 1/
t ; .0; 1/t i W 
 2 GAº

where h � ; � i denotes the standard inner product on R2, thus enters the semigroup GA in the
study of continued fractions.

Bourgain and Kontorovich [5, Theorem 1.2] proved that Zaremba’s conjecture is true
after replacing N by a density one subset. That is, there is some A such that

#DŒA� \ ¹1; : : : ; N º D N C o.N /:(1.1)

Furthermore, they showed that the o.N / term can be taken to be O.N 1�c= log logN ) for
suitable c > 0 (this relies on the Appendix) and A D 50 will suffice. The size of A has since
been improved to A D 5 by Huang [10], following previous innovations by Frolenkov and
Kan [8] on the necessary ıA.
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Theorem 2 provides the precise missing ingredient in Bourgain and Kontorovich’s
work [5], to replacing the o.N / bound for the size of the exceptional set in (1.1) with a power
savings error O.N 1��/. Indeed, combining Bourgain and Kontorovich’s method from [5],
Huang’s refinement, and with the counting estimate of Theorem 2 and its technical form
Theorem 11 in place of [5, Theorem 8.1], one can derive the following improvement of (1.1):
for A D ¹1; 2; 3; 4; 5º and for some � > 0,

(1.2) #DA \ ¹1; : : : ; N º D N CO.N
1��/:

The key point is that the uniform lattice point count enables us to replace the parameter
Q D N ˛0= log logN in [5] and [10] with a power of N .

We remark that a short alternative argument for (1.2) was recently proposed by Bourgain
in [2]. His argument deviates from the approach of [5] and hence does not require orbital
counting estimates.

We draw the reader’s attention to the survey article [3] where other applications to contin-
ued fractions are discussed. The reader can also see the survey of Kontorovich [11] that situates
Zaremba’s conjecture amongst other problems in the ‘thin (semi)groups’ setting.

Overview of the proofs of Theorems 1 and 2. The basic strategy is to regard our
Schottky semigroup setup as an expanding map and to apply transfer operator techniques. Nec-
essary spectral bounds are then deduced by synthesizing work of Bourgain–Varjú, Bourgain–
Gamburd–Sarnak, Dolgopyat, and Naud. For now we focus on the arguments for Theorem 1;
those for Theorem 2 are similar.

We consider the map T W I WD
Sk
iD1 Ii ! R defined by

T jIiD .gi /
�1

and the distortion function � W I ! R given by �.x/ D log jT 0.x/j, which is eventually positive
in our setting. The transfer operator Ls is defined for all s 2 C by

Ls.f /.x/ D
X
TyDx

e�s�.y/f .y/

as a bounded linear operator on C 1.I /. Lalley’s renewal equation [12] provides a link between
the counting problem for � and spectral bounds for Ls . Such spectral bounds were obtained by
Naud [14], who provided a C 1-operator norm estimate on Lm

s valid on a strip j<.s/ � ıj < �
and so deduced1) the case q D 1 of Theorem 1.

To provide a counting result that is uniformly accurate over congruence semigroups we
must actually deal with the congruence transfer operators. More precisely, let

cq W I ! SL2.Z=qZ/

be the cocycle given by
cqjIi D gi mod q;

and define the congruence transfer operator

Ls;qŒF �.x/ D
X
TyDx

e�s�ycq.y/:F.y/

1) Naud uses Ruelle zeta function techniques as in [17], in contrast to our use of the renewal equation.
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on the space of C�q -valued functions for �q WD SL2.Z=qZ/. The composition cq.y/:F.y/ is
the result of applying cq.y/ 2 �q to the vector F.y/ 2 C�q by the right regular representation
of �q . It is also useful throughout the paper to think of F as a function on I � C�q . We fix
the standard Hermitian form on C�q that comes from the identification of �q with the standard
basis of C�q and defining hg1; g2i D ıg1;g2 . The space C�q 	 1 is defined to be the space of
functions that are orthogonal to constants with respect to the fixed Hermitian form. The vector
space C�q 	 1 inherits a Hermitian form from that of C�q . It is with respect to this form that
we define the Banach spaces C 1.I IC�q 	 1/ that play a central role in this paper.

The following is the main technical result:

Theorem 4 (Bounds for congruence transfer operators). Write s D aC ib. There is
Q0 2 N such that for any � > 0, there are � D �.�/ > 0, b0 > 0, 0 < �� < 1, C� > 0, r > 0,
0 < �0 < 1 and C > 0 such that the following holds for all a 2 R with ja � ıj < � and b 2 R:

(1) When jbj � b0 and f 2 C 1.I IC�q 	 1/,

kLm
s;qf kC1 � Cq

C�m0 kf kC1

when .q;Q0/ D 1. Here C�q 	 1 is the orthogonal complement to the constant functions
in the right regular representation of �q .

(2) When jbj > b0,
kLm

s;qkC1 � C�jbj
1C��m�

uniformly with respect to q 2 N.

The transfer operators have two parameters s, the Laplace transform-dual/frequency ver-
sion of the counting parameter, and q, the modular parameter. Since inverting the Laplace
transform that was taken involves an infinite vertical contour, one must obtain spectral bounds
that are uniform in s with <.s/ within some fixed small window of ı. The bounds should also
be uniform with respect to the currently considered family of moduli q. These bounds rely on
two different inputs that both involve deep ideas.

To address large imaginary part of s considerations, we will use the method of Dolgopyat
from [7], and its further development by Naud from [14]. We follow Naud’s analysis from [14]
up to the point of departure from Naud’s work in Lemma 29 where we extend [14, Lemma 5.10]
to vector-valued functions. Here, an important point that prevents the cocycle cq from interfer-
ing with the non-stationary phase is that it is locally constant. We mention that this observation
was first due to [15] where they consider the congruence transfer operator associated to the
Markov partition given by the geodesic flow.

For bounded =.s/ and varying q we follow the work of Bourgain, Gamburd and Sarnak
from [4] and the work of Bourgain, Kontorovich and Magee in the Appendix, which allows us
to relate the norm kLm

s;qkC1 to the expander result on the Cayley graphs of the �q with respect
to a fixed generating set of gi ’s. The main reason behind our successful treatment of arbitrary
moduli q case is the work of Bourgain-Varjú establishing the expander result for SL2.Z=qZ/
for arbitrary q, as explained in the Appendix.

Acknowledgement. We would like to thank Peter Sarnak for his encouragement and
support throughout this project. We thank Jean Bourgain, Alex Kontorovich and Curt McMullen
for helpful comments on an earlier version of this paper.
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2. Dynamics and Thermodynamics on the boundary

2.1. The dynamical system T . We construct a dynamical system T W I ! R on a dis-
joint union of intervals I that plays a central role in the counting estimates of our main
Theorems 1 and 2, and set up the notations and the assumptions which will be used throughout
the paper.

I: Schottky semigroup case. Let g1; : : : ; gk0 (k0 � 2) be the Schottky generating set
in SL2.Z/. We let ¹ QIi ; QJi W i D 1; : : : ; k0º be the intervals such that gi maps the exterior of QJi
onto the interior of QIi as in the definition of the Schottky generators. Set gk0C` D g�1` and
QIk0C` D QJ` for 1 � ` � k0.

For any 0 � ` � k0, let � be the semigroup generated by g1; : : : ; gk0 ; gk0C1; : : : ; gk0C`;
we will call � a Schottky semigroup. This is slightly more general than the definition we gave
in the Introduction, and the main reason of this extension is to include Schottky groups in
our discussion of Schottky semigroups. Note that when ` D k0, � coincides with the Schottky
subgroup generated by g1; : : : ; gk0 .

Set p D k0 C `. We now define a mapB W QI ! R [ ¹1º for QI WD
Sp
iD1
QIi by the piece-

wise Möbius action
Bj QIi

D g�1i :

Since gi .1/ 2 QIi , the image of B contains1.
The cylinders of length n are by definition the sets of the form

QIi1 \ B
�1. QIi2/ \ � � � \ B

�.n�1/. QIin/;

where each 1 � ij � p. Let I be the union of the cylinders of length 2 and define

T W I ! R

to be the restriction of B to I . Note that gi .1/ … I and hence the image of T does not
contain 1; it is for this reason that we replaced QI with I . Finally, we say that a sequence
gi1 ; gi2 ; gi3 ; : : : of the Schottky generators is admissible if no gij is followed by its inverse.
This means all the words obtained by concatenating consecutive subsequences are reduced.
We now let k denote the number of cylinders of length 2.

II: Continued fraction semigroup case. Let A be a finite subset of N with at least two
elements. For a 2 A, set

ga WD

 
0 1

1 a

!
:

Let � be the continued fractions semigroup �A generated by gaga0 , a; a0 2 A. Since a; a0 � 1,
it follows that the trace of any element of � is strictly bigger than 2 and hence every element
of � is hyperbolic.

Note that the ga acts as Möbius transformations on R [ ¹1º by

ga.z/ D
1

z C a
:

Let A denote the largest member of A and consider the interval IA WD Œ 1
AC1

; 1�.
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For a 2 A, let Ia WD gaIA, which can be computed to be

Ia D

�
1

aC 1
;

1

aC .AC 1/�1

�
�

�
1

aC 1
;
1

a

�
:

The Ia are clearly disjoint as A � 1. It follows that the ga generate a free semigroup by the
ping-pong argument. We also record for later use that the derivative of the Möbius action has

(2.1) g0a.z/ D
1

jz C aj2
� .aC .1C A/�1/�2 � .1C .1C A/�1/�2

for all z 2 IA. We now set
Ia;a0 WD gaga0IA � Ia

obtaining a disjoint collection of #A2 number of closed intervals. Rename these intervals Ia;a0
and corresponding elements gag0a as Ii ’s and gi ’s, respectively.

Define
T W I ! R; T jIiD .gi /

�1:

Note that gaga0I � Ia;a0 , in other words, giI � Ii for each 1 � i � #A2. Again, we let
k D #A2 denote the number of intervals obtained.

Set-up. In the rest of this paper, let � be a Schottky semigroup or the continued frac-
tions semigroup, with the associated locally analytic map

T W I D
[
i

Ii ! R given by T jIi D g
�1
i

constructed above.
It follows easily from the construction that we have the

Markov property. If T .Ii / \ Ij ¤ 0, then T .Ii / � Ij .

Proposition 5. The map T is eventually expanding, that is, there areD > 0, 
 > 1 such
that for all N � 1 and x 2 T �NC1.I /,

j.TN /0.x/j � D�1
N ;

wherever the derivative exists2) in T �NC1.I /.

Proof. For the Schottky semigroup case, this can be proved exactly as in the proof
of [1, Proposition 15.4]. For the continued fraction case it follows from (2.1) and the chain
rule that for any z 2 I ,

jT 0.z/j � .1C .1C A/�1/4 > 1

and hence the claim follows.

2) The derivative may have poles.
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We also must introduce the following distortion function on I .

Definition 6 (Distortion function). The distortion function O� W I ! R is defined by

O�.x/ D log jT 0.x/j:

This definition is very natural for our purposes. For certain technical calculations, how-
ever, it is easier to work with a slightly different version. We consider the Cayley map J from
the upper half plane to the unit disc sending i to the center 0 of the disc. We can therefore think
of T as acting on the subset J.I / of the unit circle. This gives an alternative distortion function.

Definition 7 (Distortion function II). The distortion function � W I ! R is defined by

�.x/ D log j.J ı T ı J�1/0.J x/j:

The two distortion functions mentioned here are cohomologous (that is, there is a func-
tion h D � log.J 0/ such that O�.x/ D �.x/C h.x/ � h.T .x//), so are equivalent for many pur-
poses. Sometimes it is convenient to work with one, sometimes the other.

Since T is real analytic, and it is easy to see that T 0 is never zero on I , it follows that �
is real analytic on I . The iterated version

�N .x/ WD

N�1X
iD0

�.T ix/

measures the distortion along a trajectory of T . It follows from the eventually expanding prop-
erty of T that there is an N0 such that for all N � N0, O�N > 0 on the cylinders of length N ,
that is, O� is eventually positive. Since � is cohomologous to O� we conclude that � is also
eventually positive.

Let dE denote Euclidean distance in the upper half plane. Fix the basepoint o D i 2 H.
The following lemma links the lattice point count with the dynamical system we have defined.

Lemma 8. There exist C; r > 0 and � < 1 such that if k0 is a point in I , then forL 2 N
and admissible sequence of gij ,

(2.2) dE .gi1:::giLo; gi1:::giLk0/ � C�
L:

If in the general Schottky semigroup case, we also require that k0 … QIi , where

i D iL C k
0 mod 2k0:

Proof. Inequality (2.2) follows from the fact that Möbius transformations preserve
(generalized) circles orthogonal to the boundary of H, together with the eventually expanding
property of T .

We denote by K the limit set of the semigroup � , i.e., the set of all accumulation points
in à.H/ D R [ ¹1º of the orbit �:o. It follows from Lemma 8 that the limit setK is also given
by the T -invariant set

K D

1\
iD1

T �i .I /:
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In order to perform counting in congruence classes, we need to twist our dynamical
system by a family of locally constant maps. Let �q D SL2.Z=qZ/.

Definition 9 (Modular cocycle). For every modulus q 2 N, define cq W I ! �q by

cqjIiD gi mod q:

This quantity will appear again naturally in Section 3 when we perform the lattice point
count.

2.2. Thermodynamics. For a T -invariant probability measure � on K, let h�.T /
denote the measure-theoretic entropy of T with respect to �. Let M.K/T denote the set of
all T -invariant probability measures on K.

The pressure functional is defined on f 2 L.K/ by

P.f / WD sup
�2M.K/T

�
h�.T / �

Z
K

f d�

�
:

It follows from the variational principle that P.�s�/ is strictly decreasing in a real parameter s
and has a unique positive zero denoted by s0. Moreover, it is known that in the current setting
s0 D ı, where ı is the Hausdorff dimension of K.

Let L.K/ denote the Banach space of Lipschitz functions on K. For any real-valued
f 2 L.K/, the transfer operator Lf on L.K/ is given by

Lf ŒG�.x/ D
X
TyDx

ef .y/G.y/:

The basic spectral theory of transfer operators is given by the Ruelle–Perron–Frobenius Theo-
rem. We state this following Naud [14], the result can also be found in [16].

Theorem 10 (Ruelle–Perron–Frobenius). The following statements hold.

(1) There is a unique probability measure �f on K such that L�
f
.�f / D e

P.f /�f .

(2) The maximal eigenvalue of Lf is eP.f / which belongs to a unique positive eigenfunction
hf 2 L.K/ with �f .hf / D 1.

(3) The remainder of the spectrum of Lf is contained in a disc of radius strictly less
than eP.f /.

Our functional analysis takes place for the most part on the Banach space C 1.I / with
the norm

(2.3) kf kC1.I / D kf k1 C kf
0
k1;

or closely related spaces of vector-valued functions. As in [14] we need to note that Theo-
rem 10 extends reasonably to Lf acting on C 1.I / given f 2 C 1.I /. In particular, Lf acting
on C 1.I / has the same spectral properties relative to a positive eigenfunction hf 2 C 1.I / such
that Lf hf D e

P.f /hf . We also view �f as a measure on I with support in K.
We will write simply Ls D L�s� in the sequel.
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3. Counting

3.1. From the lattice point count to the boundary dynamics. We now show how one
can adapt the work of Lalley [12] to get counting estimates in our setting. Let �q D SL2.Z=qZ/.
We convert questions about the lattice point count in congruence classes into questions about
the R�q -valued function

N �q .a; 
0; '/ WD
X


2�[¹eº
d.o;

0o/�d.o;
0o/�a

G.

0o/�.�q.
//:';

where

� G is a non-negative function on H [ R with the property that there exist an integer M
and neighborhood JM of the length M cylinders in I such that G is locally constant
on JM . We write g for the restriction of G to R.

� ' 2 R�q , �q W � ! �q is reduction mod q and � is the right regular representation of �q .

� o D i 2 H is our fixed origin and 
0 2 � [ id.

While this might seem mysterious, we explain as follows.
Firstly, and most importantly, the main Theorem 1 stated in our Introduction is directly

analogous to certain estimates for N �q .a; id; '/ for suitable test '.

The distance d vs the matrix norm k
k. One has the identity

k
k2 D 2 cosh.d.i; 
i//:

With this in hand and our choice o D i of basepoint, the condition d.i; 

0i/ � d.i; 
0i/ � a
becomes

k

0k

k
0k
� R;

where R D
p
2 cosh.a/ D ea=2. 3)

The parameter 
0. Our main Theorem 1 of the Introduction is obtained by setting

0 D id. However, even to obtain this simplified version, consideration of general 
0 is neces-
sary in order to set up the forthcoming recursion over the tree-like � . This recursive formula
leads to the renewal equation.

3) More precisely, the condition k

0k
k
k

� R corresponds to an inequality

d.i; 

0i/ � d.i; 
0i/ � 2 logRC log.1C e�2d.i;
0i//C log
�
1C

s
1 �

1

R4 cosh2 d.i; 
0i/

�
(�)

D aC log.1C e�2d.i;
0i//CO.e�2a/:

The difference is only important insofar as it changes the leading constant in our main theorem.
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The functionG . This function allows one to perform sector estimates by only counting
lattice points that fall close to a prescribed part of the boundary à.H/ of hyperbolic space.

Modular twisting. Let us now explain the modular twisting in the simple case that
G WD 1. Recall that we are supposed to be counting in a given congruence class � 2 �q . One
can decompose the characteristic function of the singleton set � according to its constant coeffi-
cient and a part orthogonal to constants, and look at N.a; 
0; '/ with ' set in turn to these
different components. Since the estimate is additive one can estimate the corresponding quan-
tities separately. The key calculation is that

N �q .a; id; 1�/ D
X


2�[¹eº
d.o;
o/�a

�.�q.
//:1� D
X


2�[¹eº
d.o;
o/�a

1��q.
/;

so one obtains the congruence lattice point count from reading off a coordinate of the vector-
valued N �q .a; id; 1�/.

Remark. Whenever we sum over semigroup elements, we have the implied constraint
that any concatenation in the summation condition be admissible; we will use the notation

P�
to emphasize this. For example, we will writeX�

k

0k

k
0k
�R


�� mod q

G.

0o/ WD
X

k

0k

k
0k
�R


�� mod q

 �
0 admissible

G.

0o/:

The most general lattice point count that the upcoming estimates for N.a; 
0; '/ will
allow us to obtain is the following.

Theorem 11 (Main Theorem, elaborated). There exist Q0 2 N, C > 0 and � > 0 such
that for all 
0 2 � , � 2 SL2.Z=qZ/ and q with .Q0; q/ D 1,X�

k

0k

k
0k
�R


�� mod q

G.

0o/ D
R2ı

j�qj
OC�.
0; GjR/CO

�
.kGk1 C kŒGjR�

0
k1/q

CR2.ı��/
�
:

Here G is any function in C 1.H [ R/ which is locally constant on some neighborhood of the
cylinders of length M in I for some M > 0. The constant OC�.
0; GjR/ > 0 is related to C�
from (3.12) but modified in light of (�). The implied constant depends on M .

We now show how to relate the quantities N �q and the dynamics on the boundary. As
before, write dE for Euclidean distance in the upper half plane. Let �.n/ denote those 
 2 �
which can be written as a reduced word in at least n generators. If 
 D gi1gi2 : : : gin is written
in reduced form, then we define the shift

� W �.n/ ! �.n�1/; �.
/ D gi2 : : : gin :

We use the convention that �.0/ D � [ ¹eº and �.gi / D e for all 1 � i � k. Throughout the
rest of this section we always assume semigroup elements are written in their reduced form.
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Define for 
 2 �
��.
/ D d.o; 
o/ � d.o; .�
/o/:

and define for n � N and 
 2 �.n/,

�N� .
/ D

N�1X
jD0

��.�
j 
/ D d.o; 
o/ � d.o; .�N 
/o/:

We can now recast N �q as

N �q .a; 
0; '/ D

1X
nD0

X

2�

�n
D
0

G.
o/�.�q.


�1
0 // � '1¹�n� .
/ � aº:

One obtains by this elementary argument a recursive formula called the renewal equation:

(3.1) N �q .a; 
0; '/ D
X



�
D
0

N �q .a � ��.
/; 
; Œ�.�q.


�1
0 //'�/CG.
0o/'1¹a � 0º:

We will now ‘push to the boundary’, replacing quantities with boundary counterparts
under the following Dictionary.

Inside H (lattice point count) The boundary à.H/

� T

�� �.x/ (see Definition 7)
�N� �N .x/ D

PN�1
iD0 �.T

ix/

G g D GjI

� the cocycle cq (see Definition 9)
�.�q.



�1
0 // cNq .x/ WD cq.T

N�1x/cq.T
N�2x/ : : : cq.T x/cq.x/

N �q .a; 
0; '/ Nq.a; x; '/ D
P1
nD0

P
yWT nyDx g.y/�.c

n
q .y//'1¹�n.y/ � aº

Table 1

These new quantities play a central role in the remainder of the paper, in place of their
old counterparts. We take this opportunity to outline the rest of this section.

� We would like to understand the quantity N �q .a; 
0; '/. It is not clear how to do this
directly, so we compare it to Nq.a; 
0k0; '/. Unfortunately that comparison is only valid
when 
0 is a “large” group element (see Lemmas 12 and 13), but we can arrange that by
repeated application of the finite renewal equation (see (3.1)) so we obtain Lemma 14.

� Next we relate Nq.a; 
k0; '/ to the transfer operators. This is done by means of the
boundary renewal equation (3.4) and a Laplace transform: we obtain (3.5).

� Spectral bounds for transfer operators (see Theorem 4) together with equation (3.5) and
the Laplace inversion formula give us good control onNq.a; 
k0; '/: see Proposition 17.

� Finally, we use control of Nq.a; 
k0; '/ to gain control of N �q .a; 
0; '/.

We will now put this outline into practice.
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Assume that 
0 ¤ 1 (the case 
0 D 1 follows from this consideration4)). In the Schottky
setup, we say that k0 2 QIi is admissible for 
0 if


0 D gi1 : : : giN

is reduced and iN ¤ i C k0 mod 2k0 . We fix such an admissible k0 2 K now – if in the con-
tinued fractions setup this can be chosen arbitrarily in K.

Lemma 12. There is � < 1 such that when


 D gj0 : : : gjnCN

is a reduced word in � , and 

0 is also reduced/admissible then

�n� .

0/ D �
n.

0k0/CO.�

N /:

Proof. Let C and � be the constants from Lemma 8. Then

(3.2) dE .

0o; 

0k0/ � C�
nCN :

We also have

��.gj0gj1gj2 : : : gjn�1 : : : gjnCN 
0/ D � log jg0j0.gj1gj2 : : : gjnCN 
0o/j

C o.dE .gj1gj2 : : : gjnCN 
0o;R//:

The derivative here is for the action of � on the unit disc model obtained via J ; a similar
estimate is given in [12, p. 41]. Note that the error term can be measured either in the unit disc
model or the upper half plane model, as the two are bi-Lipschitz near K. It follows then that

��.gj0gj1gj2 : : : gjnCN 
0/ D � log jg0j0.gj1gj2 : : : gjnCN 
0o/j CO.�
nCN�1/:

Since there is some uniform bound for the derivative of log jg0i j close to the part of I where gi
is an inverse branch of T , this together with (3.2) implies

��.gj0gj1gj2 : : : gjnCN 
0/ D � log jg0j0.gj1gj2 : : : gjnCN 
0k0/j CO.�
nCN�1/:

By iterating for n steps and summing the geometric series it follows that

�n� .gj0gj1gj2 : : : gjnCN 
0/ D � log j.gj0gj1gj2 : : : gjn�1/
0.gjn : : : gjnCN 
0k0/j CO.�

N /

or what is the same
�n� .

0/ D �

n.

0k0/CO.�
N /;

proving the lemma.

4) By applying the renewal equation (3.1), the quantity N �q .a; 1; '/ is converted to a constant plus a finite
sum of quantities of the form N �q . � ; 
0; � /, where 
0 ¤ 1.
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Lemma 13. Suppose ' is non-negative. There are N0, � < 1 and C depending on G
such that if N > N0 and


1 D gr1 : : : grN 
0

is an admissible concatenation (hence k0 is admissible for 
1), then

Nq.a � C�
N ; 
1k0; '/ � N

�
q .a; 
1; '/ � Nq.aC C�

N ; 
1k0; '/:

The inequalities are understood between functions on R�q .

Proof. We will use the fact that the map 

1 7! 

1k0 on admissible concatenations
intertwines the shift � and the map T . One has

N �q .a; 
1; '/ D

1X
nD0

X�


Dgi1 :::gin

G.

1o/�.�q.
//'1¹�n� .

1/ � aº(3.3)

and

Nq.a; 
1k0; '/ D

1X
nD0

X�


Dgi1 :::gin

g.

1k0/�.�q.
//'1¹�n.

1k0/ � aº:

These can now be compared term by term. If N is large enough, depending on G, then
G.

1o/ D g.

1k0/ for all terms as all the 

1o will lie in the neighborhood JM , where
G is locally constant. On the other hand, we have from Lemma 12 that

1¹�n� .

1/ � aº � 1¹�n.

1k0/ � aC C�N º

for some C . Also, in the other direction,

1¹�n.

1k0/ � a � C�N º � 1¹�n� .

1/ � aº:

Given that ' and hence �.�q.
//' are positive functions, inserting these inequalities into (3.3)
gives the result after suitably choosing N0.

Following Lalley [12, p. 22], we iterate the finite renewal equation (3.1) to obtain

N �q .a; 
0; '/ D
X



�n
D
0

N �q .a � �
n
� .
/; 
; �Œ�q.



�1
0 /�'/

C

n�1X
mD1

X



�m
D
0

G.
o/�Œ�q.


�1
0 /�'1¹a � �m� .
/ � 0º

CG.
0o/'1¹a � 0º:

We want to increase n so we note that the second line is bounded by (recall k is the number of
intervals)

n�1X
mD0

kmkGk1k'k � kGk1k'kk
n:
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We will eventually set
n D bcac

for small enough c. This gives

N �q .a; 
0; '/ D
X



�n
D
0

N �q .a � �
n
� .
/; 
; �Œ�q.



�1
0 /�'/CO.kGk1k'ke

.logk/ca/:

We can now use Lemma 13 to get:

Lemma 14. Up to an error of O.kGk1k'ke.logk/ca/, N �q .a; 
0; '/ is sandwiched
between X



�n
D
0

Nq.a � �
n
� .
/ � C�

n; 
k0; �Œ�q.


�1
0 /�'/

and X



�n
D
0

Nq.a � �
n
� .
/C C�

n; 
k0; �Œ�q.


�1
0 /�'/:

This sandwiching allows us to convert questions aboutN �q ; and hence our main theorem,
to questions about Nq . We leave the relation for now since going any further in the comparison
requires results from later in the paper. Hopefully by now we have motivated the study of Nq
and the dynamical system of Section 2.1.

3.2. The renewal equation: Boundary version. The quantity Nq also satisfies a ver-
sion of the renewal equation: we first describe a simple version without any congruence aspect.
Let g 2 C 1.I / as before.

We define

N.a; x/ D

1X
nD0

X
y

T nyDx

g.y/1¹�n.y/ � aº;

where 1¹�n.y/ � aº is the characteristic function of ¹�n.y/ � aº. Only finitely many of the n
give a contribution to the sum, since � is eventually positive. The renewal equation states

(3.4) N.a; x/ D
X
y

TyDx

N.a � �.y/; y/C g.x/1¹a � 0º:

This is related to the transfer operator L�s� by taking a Laplace transform in the a variable.
If one defines

n.s; x/ D

Z 1
�1

e�saN.a; x/ da;

then (3.4) is transformed into

n.s; x/ D ŒLsn.s; � /�.x/C
g.x/

s
;

where LsŒf � is the transfer operator defined in Section 2.2. The former equation can be recast
to

s:n.s; � / D .1 �Ls/
�1g:
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We now adapt our formulae to take account of the congruence aspect. The congruence
version of the renewal equation at level q concerns the quantity

Nq.a; x; '/ WD

1X
nD0

X
y

T nyDx

g.y/�.cnq .y//'1¹�n.y/ � aº 2 C�q

from before. This congruence renewal equation reads

Nq.a; x; '/ D
X
y

TyDx

�.cq.y//Nq.a � �.y/; y; '/C g.x/'1¹0 � aº:

Consider the congruence transfer operator Ls;q on C�q -valued functions defined as follows:

Ls;qŒF �.x/ WD
X
TyDx

e�s�.y/cq.y/:F.y/;

where cq is the modular cocycle given in Definition 9. Then parallel arguments to before give
for

nq.s; x; '/ D

Z 1
�1

e�saNq.a; x; '/ da

the formula

(3.5) snq.s; x; '/ D Œ.1 �Ls;q/
�1g ˝ '�.x/;

where g ˝ ' is the vector-valued function taking x 7! g.x/'.

3.3. Spectral theory of transfer operators. Recall that we work with the Banach
space C 1.I / with norm as in (2.3) and the similar Banach spaces C 1.I IC�q / of C�q -valued
functions. In Theorem 4 we summarized the spectral properties of Ls;q that we prove in this
paper, and that will be used to estimate equation (3.5). The proof of Theorem 4 is deferred to
Sections 4 and 5. We now continue with our counting estimates using Theorem 4 as a given.

3.4. Continuing the count. Notice that Nq and hence nq are linear in '. We split into
two cases as we can write

' D '0 C '
0;

where '0 is constant and '0 is orthogonal to constants. The analysis ofNq.a; x; '0/ boils down
to that of N.a; x/, which is in principle understood without any of the results of this paper. We
take up the analysis in the case that

'0 2 C�q 	 1;

that is, orthogonal to constants. Assume this is the case from now on.
One obtains from (3.5) and Theorem 4 that for any � > 0,

(3.6) jsjknq.s; � ; '
0/kC1 �

´
CqC .1 � �0/

�1kg ˝ 'kC1 if jbj � b0;

C�jbj
1C�.1 � ��/

�1kg ˝ 'kC1 if jbj > b0;

with the same quantifiers and constants as in Theorem 4. Consolidating constants, for any � > 0
there is C 0 D C 0.�/ such that

(3.7) jsjknq.s; � ; '
0/kC1 � C

0max.qC ; jbj1C�/kg ˝ 'kC1

whenever ja � ıj < � for some sufficiently small �.
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We also note that given the bounds in Theorem 4, it follows that the correspondence

s 7! .1 �Ls;q/
�1g ˝ '0

gives a holomorphic family of C 1 functions in the region ja � ıj < � for fixed g and '0, hence
nq.s; x; '

0/ is holomorphic for s in this region. This is essential for the contour shifting argu-
ment to follow. Now we follow technical work of Bourgain, Gamburd and Sarnak [4, pp. 25–26]
to extract information about Nq.a; x; '0/.

Following [4, equation (9.4)], let k be a smooth nonnegative function on R such thatR
k D 1, support.k/ � Œ1; 1� and5)

j Ok.�/j � B exp.�j�j1=2/ for some B ,

where
Ok.�/ WD

Z
R
e��tk.t/ dt:

Then let for small � > 0,
k�.t/ D �

�1k.t��1/;

this has the effect that

(3.8) Ok�.�/ D Ok.��/; j Ok�.�/j � B exp.�j��j1=2/:

Consider the smoothed quantity of interestZ 1
�1

k�.t/Nq.aC t; x; '
0/ dt D

1

2�i

Z
s2ıCiR

easnq.s; x; '
0/ Ok�.s/ ds

by inverting the Laplace transform and interchanging the order of integration. From (3.7), nq is
well enough behaved that this is possible. For technical reasons let �0 D min.ı=2; �=2/. We can
shift the contour to <.s/ D ı � �0 to get that the above is the same as

1

2�i

Z
s2ı��0CiR

easnq.s; x; '
0/ Ok�.s/ ds

D
1

2�
ea.ı��

0/

Z
�2R

eai�nq.ı � �
0
C i�; x; '0/ Ok�.ı � �

0
C i�/ d�;

where s D ı � �0 C i� . Putting in the bound (3.6) for nq together with (3.8) gives the new
bound

BC 0

2�
ea.ı��

0/
kg ˝ '0kC1

�
qC

Z
j� j�b0

jı � �0 C i� j�1e�j�.ı��
0Ci�/j1=2 d�

C

Z
j� j>b0

jı � �0 C i� j�1j� j1C�e�j�.ı��
0Ci�/j1=2 d�

�
�
BC 0

2�
ea.ı��

0/
kg ˝ '0kC1

�
4qC b0

ı � �0
C C 00j�j�1��

�
for some new absolute constantsC 0; C 00. Putting this together (choosing � D 1 is enough) gives
the following.

5) The assumption that Ok has stretched exponential decay is overly strong here: it would be sufficient for
example that Ok be uniformly bounded and in L1 of any vertical line in C with real part sufficiently close to ı.
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Lemma 15. There is Q0 > 0 provided by Theorem 4 and positive constants �0, C , �1,
�2 such that for q with .Q0; q/ D 1 and any g 2 C 1.I /, '0 2 C�q 	 1 we have



Z �

��

k�.t/Nq.aC t; x; '
0/ dt





 < ea.ı��0/kg ˝ '0kC1��1qC C �2j�j�2�;
where the norm on the left-hand side is the one in C�q .

We now describe Nq.a; x; '0/ with '0 a constant function. In this case the counting
reduces to the non-congruence setting. The following is a straightforward adaptation of [4, Pro-
position 10.2] to our setting. This effectivizes work of Lalley [12], using the work of Naud [14]
as input to get a power saving error term. Let 1 be the constant function in C�q taking on the
value 1.

Lemma 16. There exists �00 > 0 such that for any q, g 2 C 1.I / we haveZ �

��

k�.t/Nq.aC t; x; 1/ dt D C.x; g/e
ıa1CO

�
kgkC1 j�qj�

�3e.ı��
00/a
�
;

where

C.x; g/ D

�R
g d��ı�

ı
R
� d�0

�
h�ı� .x/

is a C 1 function of x and the error is estimated in C 1 norm, and �, h are the measures and
functions we defined in Theorem 10.

We remark that the j�qjkgkC1 in the error term above comes from kg ˝ '0kC1 . We can
now put these lemmas together to get

Proposition 17. There is Q0 > 0 provided by Theorem 4 such that when .Q0; q/ D 1,
the following holds. There is � > 0 such that for any non-negative ' 2 R�q � C�q ,

Nq.a; x; '/ D
C.x; g/eıah'; 1i1

j�qj
CO

�
e.ı��/aqC kgkC1k'k

�
;

where h � ; � i is the standard inner product.

Proof. Decompose ' as

' D
h'; 1i1

j�qj
C '0:

Then Lemmas 15 and 16 give thatZ �

��

k�.t/Nq.aC t; x; '/ dt D
C.x; g/eıah'; 1i1

j�qj

C ea.ı��/O
�
kgkC1k'k.�1q

C
C �2�

�2
C ��3/

�
by using that

kg ˝ '0kC1 � k'
0
kkgkC1
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and replacing �0; �00 with a new small enough �. Now taking � D e�a�=6, we have that the error
term is

ea.ı��=2/O.qC kgkC1k'k/:

Since ' is non-negative, Nq.a; x; '/ is increasing in a and hence

Nq.a � �; x; '/ �

Z �

��

k�.t/Nq.aC t; x; '/ dt � Nq.aC �; x; '/

which is enough to get the result given the exponentially shrinking �, by replacing � with some
smaller value.

With the precise asymptotics of Proposition 17 at hand, we return to estimating
N �q .a; 
0; '/. Using Lemma 14 along with Proposition 17 gives

N �q .a; 
0; '/ D
�
1CO.ıC�n/

� eıa
j�qj
h'; 1i1

X



�n
D
0

C.
k0; g/e
�ı�n� .
/

CO

�
qC kgkC1k'ke

.ı��/a
X



�n
D
0

e�.ı��/�
n
� .
/

�

CO.kGk1k'ke
.logk/ca/:

Given that n D bcac for some small c yet to be chosen, the �n term will not be significant. We
do however have to describe the termsX



�n
D
0

C.
k0; g/e
�ı�n� .
/

and X



�n
D
0

e�.ı��/�
n
� .
/:

The latter can be bounded using Lemma 12 with N D 0 to give �n� .
/ D �
n.
k0/CO.1/ and

hence

(3.9)
X



�n
D
0

e�.ı��/�
n
� .
/ �

X
k

T nkD
0k0

e�.ı��/�
n.k/
D ŒLn

�.ı��/1�.
0k0/:

We know that L�.ı��/� is bounded by exp.P.�.ı � �/�// by the Ruelle–Perron–Frobenius
Theorem. We now therefore require n < a�

2P.�.ı��/�/
so that

ŒLn
�.ı��/1�.
0k0/� exp.nP.�.ı � �/�//� exp

�
a�

2

�
:

To describe the main term

(3.10)
eıa

j�qj
h'; 1i1

X



�n
D
0

C.
k0; g/e
�ı�n� .
/;

we require the following result of Lalley (cf. [12, Theorem 4]). It says that there is a version of
the maximal eigenfunction h�ı� on � , as opposed to K.
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Lemma 18. Fix k0 2 K. There exist a unique positive function h� W � ! R and � > 1
so that if 
 2 �.n/,

h�.
/ D h�ı� .
k0/CO.�
�n/:

Also, for all 
 2 � ,

(3.11) h�.
/ D
X

 0

�.
 0/D


e�ı��.

0/h�.


0/:

Now recall the definition of C. � ; g/ from Lemma 16. If we define the corresponding
function on � according to the pairing of h� with h�ı� ,

(3.12) C�.
; g/ D

�R
g d��ı�

ı
R
� d�0

�
h�.
/;

we get from Lemma 18 that

C�.
; g/ D C.
k0; g/CO.kgkC1�
�n/

when 
 2 �.n/. This means that the main term contribution (3.10) to N �q .a; 
0; '/ is

eıa

j�qj
h'; 1i1

� X



�n
D
0

C�.
; g/e
�ı�n� .
/ CO.kgkC1�

�n
X



�n
D
0

e�ı�
n
� .
//

�

D
eıa

j�qj
C�.
0; g/h'; 1i1C e

ıaO.��nk'kkgkC1/

by using (3.11) and a calculation similar to that in (3.9) to giveX



�n
D
0

e�ı�
n
� .
/ � ŒLn

�ı1�.
0k0/� 1:

We now let n D bcac with

c D min
�
ı � �

4 log k
;

�

2P.�.ı � �/�/

�
:

Then the result of the preceding discussion is that

N �q .a; 
0; '/ D
eıa

j�qj
C�.
0; g/h'; 1i1CO

�
.k'k.kgkC1 C kGk1/q

C e.ı��
0/a
�

for some �0 D �0.�; �; �;A/ . When '.
/ D 1¹
 D �º we have that

h'; 1i D 1

and hence evaluating N �q .a; 
0; 1¹
 D �º/ givesX�


2�

d.o;

0o/�d.o;
0o/�a

�q.
/D�

G.

0o/ D
eıa

j�qj
C�.
0; g/CO

�
.kgkC1 C kGk1/q

C e.ı��
0/a
�
:

This proves our main Theorem 11, given Theorem 4.
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4. Bounds for transfer operators: Large imaginary part

In this section we will prove part (2) of Theorem 4.

4.1. Non-local integrability. Recall from Section 2 the set I , K, the map T W I ! R,
the cocycles cq and � . We need to introduce symbolic dynamics. We write A for the k � k
matrix with .i; j / entry equal to 1 if T .Ii / � Ij and 0 otherwise. Such a matrix A is called
the transition matrix. We say that a sequence .ij / with entries in 1; : : : ; k is admissible if
T .ij / � ijC1 for all j in the index set of the sequence. When T .Ii / � Ij , we define T �1i
on Ij to be the unique locally defined branch of T �1 that maps Ij to Ii .

Let †CA (resp. †�A / be the space of positively (resp. negatively) indexed admissible
sequences on ¹1; : : : ; kº. We define for � 2 †�A the function

��.u; v/ D

1X
iD0

�.T �1��i ı � � � ı T
�1
�0
u/ � �.T �1��i ı � � � ı T

�1
�0
v/

on Ij � Ij such that T .I�0/ � Ij . It follows from the expanding property of T that �� is C 1

where it is defined. Naud (following others) defines a temporal distance function

'�;�.u; v/ D ��.u; v/ ���.u; v/

which is defined for each �; � 2 †�A and u; v 2 Ij

Definition 19 (Non-local integrability (NLI)). An eventually positive function � is said
to have property (NLI) if there are j0 2 ¹1; : : : ; kº, �; � 2 †�A with T .I�0/ \ T .I�0/ � Ij0 and
u0; v0 2 K \ Ij0 such that

à'�;�
àu

.u0; v0/ ¤ 0:

Proposition 20. The distortion functions � and O� have the non-local integrability
property.

Proof. In the two cases of Schottky semigroups and the continued fractions semigroups
we are considering, we always have two hyperbolic elements hi WD g�1i , hj WD g�1j (with
gi ; gj from the generating set) satisfying (1) T jIi D hi and T jIj D hj , (2) the hi and hj have
distinct repelling (resp. attractive) fixed points on R [ ¹1º and (3) the semigroup generated by
hi and hj consists of hyperbolic elements. Given such elements, Naud’s argument in [14, Proof
of Lemma 4.4] shows the non-local integrability properties of O�.x/ D log jT 0.x/j and �.x/.

4.2. Beginning Dolgopyat’s argument. One novelty of this paper is the following ver-
sion of [14, Theorem 2.3] that is uniform in the congruence aspect.

Proposition 21. There is b0 > 0 such that part (2) of Theorem 4 holds. That is, for any
� > 0, there is 0 < �� < 1 such that

kLm
s;qkC1 �� jbj

1C��m�

when jbj > b0 and q 2 N, as in Theorem 4.



110 Magee, Oh and Winter, Uniform congruence counting for Schottky semigroups in SL2.Z/

We now show how to relate this proposition to the construction of certain Dolgopyat
operators. Recall the Ruelle–Perron–Frobenius Theorem (Theorem 10) and its notation. Let ha
be the normalized positive eigenfunction of L�a� corresponding to the maximal eigenvalue
exp.P.�a�//. We set

�a D �a� � P.�a�/ � log.ha ı T /C log.ha/:

We now renormalize our transfer operators by defining

Ls;q WD L�a�ib�;q:

This is the same as

(4.1) Ls;q D exp.�P.�a�//M�1ha Ls;qMha ;

where Mha is multiplication by ha. It now follows by arguments as in Naud [14, p. 132] that
it is enough to prove Proposition 21 and Theorem 4 with Ls;q in place of Ls;q . We also note
here that the maximal eigenfunction of La is the constant function, with eigenvalue 1, that is,
La1 D 1 for a 2 R.

The rest of the passage to the estimates in the next section is routine but we give some
of the details for completeness. One shows that in order to prove Proposition 21 it is enough to
prove the following lemma.

Lemma 22. With the same conditions as Theorem 4, there are N > 0 and � 2 .0; 1/
such that when ja � ıj is sufficiently small and jbj is sufficiently large we haveZ

K

jLnNs;qW j
2 d�0 � �

n;

whereW 2 C 1.I IC�q /, d�0 D h�ı���ı� is the Gibbs measure onK, and kW k.b/ � 1, which
stands for the warped Sobolev norm

kW k.b/ D kW k1 C jbj
�1
kW 0k1:

These estimates are uniform in q.

This corresponds to [15, Theorem 3.1] in the work of Oh and Winter and is the uniform
version of [14, Proposition 5.3].

Lemma 22 implies Proposition 21 by the use of a priori estimates for the transfer opera-
tors that allow one to convert an L2 estimate into a C 1 bound. These estimates are given in
[14, Lemma 5.2] for complex-valued functions. They are however easily proved for vector-
valued functions giving

Lemma 23. There are �1; �2; a0; b0 > 0 and R < 1 such that for ja � ıj < a0 and
jbj > b0 we have for all f 2 C 1.I IC�q /,

kŒLns;qf �
0
k1 � �1jbjkL

n
af k1 CR

n
kLnajf

0
jk1

and
kLnı;qf k1 �

Z
K

jf j d�0 C �2R
n
kf kL.K/:
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Lemma 23 together with Lemma 22 imply Proposition 21 by arguments appearing
in [14, pp. 133–134]. Roughly speaking the ingredients are Cauchy–Schwarz to access Lem-
ma 22, remarks regarding the behavior of �ma for a close to ı that appear elsewhere in this
paper, and splitting up exponents in the form m D nN C r .

The proof of Lemma 22 proceeds through the construction of certain Dolgopyat operators
that we give in the next subsection.

4.3. Construction of uniform Dolgopyat operators. We follow the notation of Naud
(cf. [14]). For A > 0 we consider the cone

CA WD ¹H 2 C
1.I / W H > 0 and jH 0.x/j � AH.x/ for all x 2 I º:

In this subsection we establish a uniform version of the key lemma of Naud [14, Lemma 5.4].
This is also analogous to [15, Theorem 3.3].

Lemma 24 (Construction of uniform Dolgopyat operators). Suppose � has the (NLI)
property. There exist N > 0, A > 1 and � 2 .0; 1/ such that for all s D aC ib with ja � ıj
small and jbj > b0 large, there exists a finite set of operators .N J

s /J2Es that are bounded on
C 1.I / and satisfy the following three conditions:

(1) The cone CAjbj is stable by N J
s for all J 2 Es .

(2) For all H 2 CAjbj and all J 2 Es ,Z
K

jN J
s H j

2 d�0 � �

Z
K

jH j2 d�0:

(3) Given H 2 CAjbj and f 2 C 1.I IC�q / such that jf j � H and jf 0j � AjbjH , there is
J 2 Es with

jLNs;qf j � N J
s H and j.LNs;qf /

0
j � AjbjN J

s H:

When we write jf j for f 2 C 1.I IC�q /, we refer to the function obtained by taking
pointwise Euclidean (l2) norms. We now show that the existence of these operators implies
Lemma 22.

Proof that Lemma 24 implies Lemma 22. Given this construction (that is, Lemma 24),
Lemma 22 is proved following the argument of [15, p. 21] or one in [14, p. 135]. Indeed, given
non-zero f 2 C 1.I IC�q / with kf k.b/ � 1 (cf. Lemma 22 for the definition of kk.b/), we
define

H D kf k.b/1:

One sees that H and f are as in Lemma 24, that is, H 2 CAjbj, jf j � H , and jf 0j � AjbjH
as A > 1. One gets then by part (3) of Lemma 24 that

jLNs;qf j � N J
s H; j.L

N
s;qf /

0
j � AjbjN J

s H

for some J 2 Es . Since CAjbj is stable under the N J
s , one can repeat this to get for some

sequence J1; : : : ; Jn 2 Es thatZ
K

jLnNs f j2 d�0 �

Z
K

jN JN
s : : :N J1

s H j2 d�0 � �
n

Z
K

jH j2 d�0 � �
n

by using part (2) of Lemma 24.
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The first two properties of Lemma 24 were proved by Naud in [14]; we follow closely
Naud’s construction of the operators in the following.

4.4. Consequences of non-local integrability (NLI). Naud notes the following conse-
quence of (NLI) that we will use later.

Lemma 25 (Proposition 5.5 of [14]). If � has property (NLI), there are m;m0; N0 > 0
such that for all N > N0, there are two branches ˛N1 ; ˛

N
2 of T �N with

m0 �

ˇ̌̌̌
d

du
Œ�N ı ˛N1 � �

N
ı ˛N2 �.u/

ˇ̌̌̌
� m > 0 for all u 2 I:

We remark here that the lower bound is the harder one. The upper bound follows from
the expanding property of T and regularity of � .

Now suppose we deal with � with property (NLI). Let �; �; u0; v0 and j0 be as in Defini-
tion 19.

Throughout the rest of this paper, the assignments N ! ˛N1 and N ! ˛N2 are fixed as
those given by Lemma 25.

We do however need to know some of the details about how the ˛Ni have been con-
structed, which we give now.

As in the proof of [14, Proposition 5.5] there are � > 0 and an open interval U with

Ij0 � U 3 u0

such that ˇ̌̌̌
à'�;�
àu

.u0; v0/

ˇ̌̌̌
> �

for all u0 2 U. We define for any n,

ˇn1 D T
�1
��nC1

ı � � � ı T �1�0 and ˇn2 D T
�1
��nC1

ı � � � ı T �1�0 ;

two branches of T �n on Ij0 . In the proof of [14, Proposition 5.5], Naud also constructs

 W I ! U

which is a branch of T � Op for some Op a fixed positive integer related to the mixing and expand-
ing properties of T . The image of  is a disjoint union of k closed intervals each of which is
diffeomorphic to some Ij by  . We denote by U0 the image of  . We will use the parameteri-
zation

N D QN C Op:

Then the ˛Ni are defined by
˛Ni D ˇ

QN
i ı  :

As Qp is fixed, QN andN are coupled. They are to be chosen, depending on b and other demands
in the following.

4.5. Construction of Dolgopyat operators. The following result is proved by Naud
[14, Proposition 5.6].
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Proposition 26 (Triadic partition). There are A1; A01 > 0 and A2 > 0 such that when
� > 0 is small enough, there is a finite collection .Vi /1�i�Q of closed intervals ordered along
U0 such that:

(1) U �
SQ
iD1 Vi � U0, Vi \ IntU0 ¤ ; for all i and IntVi \ IntVj D ; when i ¤ j .

(2) For all 1 � i � Q, �A01 � jVi j � �A1.

(3) For all 1 � j � Q with Vj \K ¤ ;, one has either Vj�1 \K ¤ ; and VjC1 \K ¤ ;
or Vj�2 \K ¤ ; and Vj�1 \K ¤ ; or VjC1 \K ¤ ; and VjC2 \K ¤ ;. In other
words, intervals that intersect K come at least in triads.

(4) For all 1 � i � Q with Vi \K ¤ ;, Vi \K � U0 and dist.àVi ; K/ � A2jVi j.

Now following Naud, we can construct the Dolgopyat operators. Suppose that we are
working at frequency s D aC ib. Then for fixed �0 to be chosen, we construct a triadic partition
.Vi /

Q
iD1 of U0 with � D �0=jbj as in Proposition 26. Then for all i 2 ¹1; 2º and j 2 ¹1; : : : ;Qº

we set
Zij D ˇ

QN
i .Vj \ U0/:

We will write
Xj D ¹x 2 I W  .x/ 2 Vj º; 1 � j � Q:

Properties (4) and (2) of Proposition 26 imply that

(4.2) dist.K \ Vj ; àVj / � A2jVj j �
A2A

0
1�
0

jbj

whenever K \ Vj ¤ 0. For such j we can find a C 1 cutoff �j on I that is � 1 on the convex
hull of K \ Vj and� 0 outside Vj . Due to (4.2) we can ensure that

j�0j j � A3
jbj

�0
; A3 D A3.A2; A

0
1/:

Then the index set Is is defined to be

Is WD ¹.i; j / W 1 � i � 2; 1 � j � Q; Vj \K ¤ ;º:

Allow 0 < � < 1 to be fixed shortly. For all J � Is we define �J 2 C 1.I / by

�J .x/ D

´
1 � ��j . .T

Nx//; if x 2 Zji for .i; j / 2 J ;

1; else:

Then the Dolgopyat operators on C 1.I / are defined by

N J
s .f / D L

N
a .�Jf /:

Recall that La is the transfer operator at s D a.
Let us return to our Lemma 24 so that we can complete our definitions.

Definition 27. We say that J � Is is dense if for all 1 � j � Q with Vj \K ¤ ; there
is some 1 � j 0 � Q with .i; j 0/ 2 J for some i 2 ¹1; 2º and with jj � j 0j � 2.
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We define Es of Lemma 24 to be the set of J � Is such that J is dense.
The following is proved in [14] – we have tried to contain everything that we use as

a black box here.

Proposition 28 (Naud). There are constants a0, b0, A, N0 such that for each suffi-
ciently small �0 there is �0.�0/ and �.�0/ such that whenN > N0, � < �0.�0/, ja � ıj < a0 and
jbj > b0, properties (1) and (2) of Lemma 24 hold for our .N; jbj; �; �0/ parameterized and
Es-indexed Dolgopyat operators with respect to this �.

Furthermore, there is positive C0 such that when ja � ıj < a0 we have for arbitrary N ,

(4.3) j.�Na ı ˛
N /0.x/j � C0;

and when N > N0, b > b0, we have

(4.4) j.Œ�Na C ib�
N � ı ˛N /0.x/j �

Ajbj

4
:

This was a factor in how A was chosen.

The proof of the inequalities above are discussed in [14, p. 137].
This fully completes the definition of the Dolgopyat operators modulo choice of �0, �

and N – the A and � required for Lemma 24 are that specified by Proposition 28 given these
parameters.

4.6. Proof of Lemma 24, property (3). Our remaining task in this subsection is to
prove property (3) of Lemma 24. This is proved for complex-valued functions by Naud in
[14, pp. 140–144]. Naud makes some use of taking quotients of values of functions that we will
have to work around.

We give the details now. Recall that �0; � are still undetermined. The following technical
lemma is the vector-valued version of [14, Lemma 5.10]. Recall that cq W I ! U.C�q / is our
twisting unitary-valued map at level q. We will need to consider the quantity cNq .˛

N
i x/, defined

as in the Dictionary of Table 1, where ˛Ni , i D 1; 2, are the two particular branches of T �N

that are given by Lemma 25. We record the key fact here that since cq is locally constant, so
too is cNq for any N .

Lemma 29 (Key technical fact towards non-stationary phase). Let H 2 CAjbj and let
f 2 C 1.I IC�q / such that jf j � H and jf 0j � AjbjH . For i D 1; 2; define for � a small real
parameter and for any q,

‚1.x/ WD
jeŒ�

N
a Cib�

N �.˛N1 x/cNq .˛
N
1 x/f .˛

N
1 x/C e

Œ�Na Cib�
N �.˛N2 x/cNq .˛

N
2 x/f .˛

N
2 x/j

.1 � 2�/e�
N
a .˛

N
1 x/H.˛N1 x/C e

�Na .˛
N
2 x/H.˛N2 x/

;

‚2.x/ WD
jeŒ�

N
a Cib�

N �.˛N1 x/cNq .˛
N
1 x/f .˛

N
1 x/C e

Œ�Na Cib�
N �.˛N2 x/cNq .˛

N
2 x/f .˛

N
2 x/j

e�
N
a .˛

N
1 x/H.˛N1 x/C .1 � 2�/e

�Na .˛
N
2 x/H.˛N2 x/

:

Then forN large enough, one can choose �; �0 small enough such that for j with Xj \K ¤ ;,
there are j 0 with jj � j 0j � 2, Xj 0 \K ¤ ; and i 2 ¹1; 2º such that

‚i .x/ � 1 for all x 2 Xj 0 .
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Before giving the proof we must state a simple lemma from [14]. The proof goes through
easily in our vector-valued setting. This is also covered in [15, Lemma 3.29].

Lemma 30 ([14, Lemma 5.11]). LetZ � I be an interval with jZj � c
jbj

. LetH 2 CAjbj
and f 2 C 1.I IC�q / with jf j � H and jf 0j � AjbjH . Then for c small enough, we have
either

jf .u/j �
3

4
H.u/ for all u 2 Z

or
jf .u/j �

1

4
H.u/ for all u 2 Z.

We also need the following piece of trigonometry from [14, Lemma 5.12].

Lemma 31 (Sharp triangle inequality). Let V be a finite-dimensional complex vector
space with Hermitian inner product h � ; � i. For non-zero vectors z1; z2 with jz1j=jz2j � L and

(4.5) <hz1; z2i � .1 � �/jz1jjz2j;

there is ı D ı.L; �/ such that

jz1 C z2j � .1 � ı/jz1j C jz2j:

We remark that while Lemma 31 is elementary, the fact that there is no dependence on
the dimension of V is one of the crucial points in our arguments.

Proof of Lemma 29. Choose �0 small enough so that Lemma 30 holds for all Z D Zij
(with c D �0). As in [14] by choosing N large enough it is possible to assume jZij j � jVj j for
all j; i . We also enforce � < 1=8 so that 1 � 2� � 3=4.

Now let Vj ; VjC1; VjC2 all have non-empty intersection withK. One of the j; jC1; jC2
will be the j 0 of the lemma. Set bXj D Xj [XjC1 [XjC2 and assume as in Naud that bXj
is contained in one connected component of I ; note that the set bXj is connected.

Following from our choice of � , if there are j 0 2 ¹j; j C 1; j C 2º and i 2 ¹1; 2º with
jf .u/j � 3

4
H.u/ when u 2 Zij 0 then ‚i .u/ � 1 on Zij 0 and we are done. So we can assume

that jf .u/j > 3
4
H.u/ for some u in each Zij 0 . Hence by Lemma 30, for all i; j 0 we have

(4.6) jf .u/j �
1

4
H.u/ > 0 for all u 2 Zij 0 :

We make the definition

zi .x/ WD exp
�
Œ�Na C ib�

N �.˛Ni x/
�
cNq .˛

N
i x/f .˛

N
i x/; zi W bXj ! C�q ; i D 1; 2:

The result follows from Lemma 31 after establishing bounds on the relative size and angle
of z1; z2 uniformly in appropriate Xj 0 .

Control of relative size. Firstly we wish to control the relative size of z1; z2. This is
done by Naud and his estimates go through directly in our case, after making all substitutions
of the form ˇ̌̌̌

z1.x/

z2.x/

ˇ̌̌̌
!
jz1.x/j

jz2.x/j
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and bearing in mind that cNq is a unitary-valued function. This caters to our inability to divide
non-zero vectors. The output of Naud’s argument in [14, pp. 141–142] is that given an index
j 0 2 ¹j; j C 1; j C 2º, either jz1.x/j �M jz2.x/j for all x 2 Xj 0 or jz2.x/j �M jz1.x/j for
all x 2 Xj 0 , where

M D 4 exp.2NBa/ exp.2A�0A1/

and
Ba D ak�k1 C jP.�a�/j C 2klog hak1

is a locally bounded function that arises in the estimation of �Na (cf. [14, p. 139]). Returning
to the overall argument, this means that we are done when we can establish (4.5) with some �
uniformly on some Xj 0 .

Control of relative angle. The key argument here is to very carefully control the angles
between the functions z1 and z2. One sets

ˆ.x/ WD
hz1.x/; z2.x/i

jz1.x/jjz2.x/j
;

which is the same as

ˆ.x/ D exp.ib.�N .˛N1 x/ � �
N .˛N2 x///

hcNq .˛
N
1 x/f .˛

N
1 x/; c

N
q .˛

N
2 x/f .˛

N
2 x/i

jf .˛N1 x/jjf .˛
N
2 x/j

:

Define

ui .x/ D c
N
q .˛

N
i x/

f .˛Ni x/

jf .˛Ni x/j
; x 2 bXj ; i D 1; 2:

Then the ui are C 1 as f is non-vanishing through (4.6). We have

.cNq :f / ı ˛
N
i D jf ı ˛

N
i j:ui ;

so that, differentiating on both sides and using .cNq /
0 � 0,

.cNq ı ˛
N
i /:.f ı ˛

N
i /
0
D jf ı ˛Ni j

0ui C jf ı ˛
N
i ju

0
i :

As ui has constant length 1 it follows that ui and u0i are orthogonal (in R2j�p j). Therefore

jŒf ı ˛Ni �
0
j
2
D .jf ı ˛Ni j

0/2 C jf ı ˛Ni j
2
ju0i j

2:

It now follows that

ju0i .x/j �
jŒf ı ˛Ni �

0.x/j

jf .˛Ni x/j
:

We estimate the right-hand side by a direct calculation using the chain rule with the expanding
property of T and our assumptions on H from (4.6) and the hypotheses of Lemma 29. Indeed,
Naud performs a similar calculation [14, p. 142] which yields

(4.7) ju0i .x/j � 8Ajbj
D


N
:

Note that we can rewrite the central quantity ˆ as

ˆ.x/ D exp.ib.�N .˛N1 x/ � �
N .˛N2 x///hu1.x/; u2.x/i:
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We can use (4.7) and Cauchy–Schwarz to get

(4.8)
ˇ̌̌̌
d

dx
hu1; u2i

ˇ̌̌̌
D jhu01; u2i C hu1; u

0
2ij � 16Ajbj

D


N
:

Note that we have the diameter bound

diam.bXj / � 3A1 �0
jbj
k. �1/0k1

so that using (4.8) we have

jhu1.x1/; u2.x1/i � hu1.x2/; u2.x2/ij � 3 � 16 � AA1k. 
�1/0k1�

0 D


N

for any x1; x2 2 bXj ; note here that the cocycles cNq .˛
N
i x/ are constant on OXj . We now enforce

�0 < 1
10

and N large enough so that

48 � AA1k. 
�1/0k1

D


N
< 1:

Let us cut off one branch of reasoning. Suppose that there is x0 2 bXj with

jhu1.x0/; u2.x0/ij <
1

10
:

Then for all x 2 bXj we have
jhu1.x/; u2.x/ij <

1

5
:

It would follow that j<ˆ.x/j < 1
5

for all x 2 bXj and the Lemma would be proved by our
argument with trigonometry.

Therefore we can now assume

jhu1.x/; u2.x/ij �
1

10

for all x 2 bXj . Then the new function

U.x/ D
hu1.x/; u2.x/i

jhu1.x/; u2.x/ij
2 C

is C 1 on bXj of constant length 1 and by an argument we have made before

(4.9) jU 0.x/j �
jhu1; u2i

0.x/j

jhu1.x/; u2.x/ij
� 10 � 16 � Ajbj

D


N
;

using (4.8). We can write
U.x/ D exp.i�.x//

for some C 1 real-valued � W bXj ! R. Then (4.9) reads

(4.10) j�0.x/j � 160Ajbj
D


N
:

As we assume ˆ ¤ 0 on bXj , we can find a C 1 function that we will denote

argˆ W bXj ! S1 D R=2�Z; ˆ.x/ D exp.i argˆ.x// � jˆ.x/j:
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Now define
F.x/ D .�N .˛N1 x/ � �

N .˛N2 x//; x 2 bXj :
The critical output of the (NLI) property for � , Lemma 25, tells us that

(4.11) 0 < m � jF 0.x/j � m0

when we choose N > N0, which we do. As

argˆ D bF C �;

we now have, incorporating (4.11) and (4.10),

jbj

�
m � 10 � 16A

D


N

�
� j.argˆ/0j � jbj

�
m0 C 10 � 16A

D


N

�
:

We fix, finally, N large enough so that we gain C2 > C1 > 0 (depending only on N ,m,m0, A,
D, and 
 ) with

jbjC1 � j.argˆ/0j � jbjC2:

By estimating diameters of XjC1 and bXj from Proposition 26 together with the mean value
theorem, the total cumulative change of argument of ˆ between xj 2 Xj and xjC2 2 XjC2,
written �, is between

C3�
0
� � � C4�

0;

where
C3 D C1A

0
1 inf
U0
j. �1/0j > 0; C4 D C23A1k. 

�1/0k1:

We now enforce �0 < �=.2C4/ so that we no longer need to worry about argˆ winding around
the circle. We are about to conclude. Now �0 is fixed. By our trigonometric strategy, we are
done with

� D ı

�
M;

�
C3�
0

100

�2�
unless there exist xj 2 Xj and xjC2 2 XjC2 with

<ˆ.xk/ > 1 �

�
C3�
0

100

�2
; k D j; j C 2:

In this case, by the Schwarz inequality we know

jˆ.xk/j � 1; k D j; j C 2;

so it follows that now using the principal branch for arg and, e.g., jsin xj � 2jxj

jargˆ.xk/j �
C3�
0

50
; k D j; j C 2:

Given that the argument ofˆmoves at least by C3�0 in one direction between xj and xjC2 and
does not move more than �=2 (hence does not wind), this is a contradiction.

We can now conclude this section with the following proof.
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Proof of Lemma 24, property (3). Choose N , � and �0 so that Proposition 28 holds as
well as Lemma 29. Increasing N if necessary we may also assume that

D


N
�
1

4
:

Suppose we are givenH 2 CAjbj and a function f 2 C 1.I IC�q / such that jf j � H and
jf 0j � AjbjH . The second inequality stated in property (3) is softer so we prove this first. The
complex scalar version of this inequality is proved in [14, p. 138].

We calculate

ŒLNs;qf �.x/ D
X
˛N

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/f .˛Nx/;

where
cNq .y/ D cq.T

N�1y/ : : : cq.Ty/:cq.y/

and the sum is over branches of T �N . Therefore

ŒLNs;qf �
0.x/ D

X
˛N

.Œ�Na C ib�
N � ı ˛N /0.x/ exp.Œ�Na C ib�

N �.˛Nx//cNq .˛
Nx/f .˛Nx/

C

X
˛N

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/.f ı ˛N /0.x/;

cNq being locally constant. Using that cNq is unitary and bounding derivatives of ˛N with the
eventually expanding property and chain rule gives

jŒLNs;qf �
0.x/j �

X
˛N

j.Œ�Na C ib�
N � ı ˛N /0.x/j exp.Œ�Na �.˛

Nx//H.˛Nx/

C
D


N

X
˛N

exp.Œ�Na �.˛
Nx//AjbjH.˛Nx/:

Using inequality (4.4) in Proposition 28 and our choice of N , we get

jŒLNs;qf �
0.x/j �

1

2
AjbjŒLNa H�.x/ � AjbjŒN

J
s H�.x/

given the very mild assumption � < 1=2.
Now we turn to the more difficult first inequality of Lemma 24, property (3). Given that

we have established Lemma 29 in the vector-valued setting, the proof follows by the same
argument as in [14, p. 143]. We give the details here for completeness.

Let J be the set of indices .i; j /, where ‚i .x/ � 1 when x 2 Xj . The statement of
Lemma 29 is precisely that this set of indices is dense (recall Definition 27) and hence J 2 Es
as required. We will prove

jLNs;qf j � N J
s H D La.�JH/:

Fix x. Notice that if x … IntXj for any j , then for all branches ˛N of T �N , ˛Nx … Zij and
so �J .˛Nx/ D 1 for any J . More generally, if x … IntXj for any j appearing as a coordi-
nate in J , then �J .˛Nx/ D 1. Therefore

jŒLNs;qf �.x/j �
X
˛N

exp.�Na .˛
Nx//H.˛Nx/ D N J

s ŒH �.x/:

We are left to consider x; J such that x 2 Int.Xj / and J contains .i; j / for some i .
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Suppose that .i; j / D .1; j / and .2; j / … J . Then for ˛N ¤ ˛N1 a branch of T �N ,
�J .˛

Nx/ D 1 (the only other possibility would have been ˛N D ˛N2 ). Then using‚1.x/ � 1
gives

jLNs;qŒf �.x/j �
X

˛N¤˛N1 ;˛
N
2

exp.�Na .˛
N .x//H.˛N .x//

C .1 � 2�/ exp.�Na .˛
N
1 .x//H.˛

N
1 .x//C exp.�Na .˛

N
2 .x//H.˛

N
2 .x//

� N J
s ŒH �.x/:

The case .i; j / D .2; j / and .1; j / … J is treated the same way. Finally, if .1; j / and .2; j / are
in J , then ‚1.x/;‚2.x/ � 1 from which one can estimate

jexp.Œ�Na C ib�
N �.˛N1 x//f .˛

N
1 x/C exp.Œ�Na C ib�

N �.˛N2 x//f .˛
N
2 x/j

� .1 � �/ exp.�Na .˛
N
1 .x//H.˛

N
1 .x//C .1 � �/ exp.�Na .˛

N
2 .x//H.˛

N
2 .x//

� exp.�Na .˛
N
1 .x//�J .˛

N
1 x/H.˛

N
1 .x//C exp.�Na .˛

N
2 .x//�J .˛

N
2 x/H.˛

N
2 .x//:

Also noting that �J .˛Nx/ D 1 when ˛N ¤ ˛Ni , i D 1; 2, the previous inequality shows

jLNs;qŒf �.x/j � N J
s ŒH �.x/

in our final remaining case. The proof is complete.

5. Bounds for transfer operators: Small imaginary part

In this section we will prove the first part of Theorem 4. The key point is to think of
W 2 C 1.I;C�q / as a function on I � �q and decouple the variables. This allows us to relate
the transfer operator to a convolution operator on C�q . The relevant convolution operators
have good spectral radius bounds that stem from the expander theory of �q as described in
the Appendix – the expansion technology requires that we restrict q to be coprime to a finite
bad modulus Q0, we make this restriction throughout. We now begin decoupling arguments
in order to relate part (1) of Theorem 4 to the main result of the Appendix that we state as
Theorem 33 below.

5.1. Accessing the convolution. We defineEq to be the space of functions of the group
�q D SL2.Z=qZ/ that are orthogonal to all functions lifted from �q0 for q0jq. We set out to
show that when we iterate Lns;q we suitably contract the C 1 norm.

We have calculated already that for W 2 C 1.I;C�q / with kW kC1 <1 and taking on
values only in the orthocomplement to constant functions

(5.1) ŒLNs;qW �.x/ D
X
˛N

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/W.˛Nx/;

where the sum is over branches of T �N on the interval containing x. We can write these
branches in a special form. They are given precisely by sequences

˛N D gi1gi2 : : : giN ;

where the gij form an admissible sequence. If in the general Schottky semigroup setting, we
also require that if x 2 QIi for 1 � i � 2k0, then iN ¤ i C k0 mod 2k0, recalling the notation of
Section 2.1.
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It will be convenient to make the parametrization

N DM CR; M;R > 0:

We then write
˛N D ˛M˛R;

where

(5.2) ˛M D gi1 : : : giM ; ˛R D giMC1 : : : giN ;

and view these as globally defined maps on I . Then ˛N is uniquely parameterized by the
two sequences appearing in (5.2). When we write ˛M and ˛R, henceforth we always mean
compositions of these forms. Notice that the choice of ˛R is restricted depending on x and ˛M

is restricted depending on giMC1 .
For each of the intervals Ii we pick a point x0.i/ 2 Ii . For each ˛M we pick i0 D i0.˛M /

such that ˛M gives a well-defined branch on Ii0 . Then

d.˛Nx; ˛Mx0.i0// D d.˛
M .˛Rx/; ˛Mx0.i0// �

D


M
diam.I /

by the eventually expanding property of T . Then

kW.˛Nx/ �W.˛Mx0.i0//k �
D


M
diam.I /kW kC1 :

It follows then that

ŒLNs;qW �.x/ D
X
˛M

X�

˛R

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/W.˛Mx0.i0//

CO

�
kW kC1

D


M
diam.I /

X
˛N

exp.�Na .˛
Nx//

�
;

where the star on summation means that we restrict to those ˛R with necessary restriction on
giN coming from x and giMC1 coming from ˛M . Note that i0 depends on ˛M . We will assume
that D
�M is small, say < 1=.100 diam.I // and note that the sum in the error term isX

˛N

exp.�Na .˛
Nx// D LNa Œ1�.x/ D 1.x/ D 1

as the operator has been normalized. So then

ŒLNs;qW �.x/ D
X
˛M

X�

˛R

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/W.˛Mx0.i0//(5.3)

CO.kW kC1

�M /:

This is an important estimate as it allows us access the expansion properties coming
from cq by decoupling M and N .

Recall that cq was obtained by reducing the matrices gi modulo q to obtain a locally
constant mapping cq W I ! �q . This mapping can be reinterpreted as a unitary-valued map
cq W I ! U.C�q / via the right regular representation of �q .
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For any specified ˛M as in (5.2) and x 2 I we construct the complex-valued measure
on �q ,

(5.4) �s;x;˛M D
X�

˛R

exp.Œ�Na C ib�
N �.˛M˛Rx//ıcRq .˛Rx/�1 ;

where ıg gives mass one to g 2 �q . We note for the reader’s convenience that one can calculate
from the definition in the Dictionary of Table 1, Section 3,

cRq .˛
Rx/ D giN giN�1 : : : giMC1 mod q; cMq .˛

Mx0.i0// D giMgiM�1 : : : gi1 mod q:

For any f 2 C 1.I IC�q / and ˛M as in (5.2) we construct a complex-valued measure
'f;˛M by

'f;˛M D
X
g2�q

f .˛Mx0.i0//jgıgcMq .˛Mx0.i0//�1
;

where cq is thought of as �q-valued and f .˛Mx0.i0// thought of as a C-valued function on �q ,
with jg standing for evaluation at g. Also recall i0 D i0.˛M /. Then

Œ'f;˛M?�s;x;˛M � D
X
g2�q

X�

˛R

exp.Œ�Na C ib�
N �.˛M˛Rx//f .˛Mx0.i0//jg

� ıgcMq .˛Mx0.i0//�1
? ıcRq .˛Rx/�1

D

X
g2�q

X�

˛R

exp.Œ�Na Cib�
N �.˛M˛Rx//f .˛Mx0.i0//jgıgcNq .˛M˛Rx/�1 :

This means that, now viewed as a function on SL2.Z=qZ/,

Œ'f;˛M ? �s;x;˛M � D
X�

˛R

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

M˛Rx/f .˛Mx0.i0//:

The reader should compare this with (5.3).

5.2. Bounds for �s;x;˛M . We need a bound for k�s;x;˛M k1 to use the result of the
Appendix. Firstly we write

j�s;x;˛M j �
X�

˛R

exp.�Na .˛
Nx//ıcRq .˛Rx/:

Notice that
�Na .˛

M˛Rx/ D �Ma .˛M˛Rx/C �Ra .˛
Rx/:

Then
k�s;x;˛M k1 �

X�

˛R

exp.�Ma .˛M˛Rx// exp.�Ra .˛
Rx//:

We now decouple: let ˛R0 be any arbitrary choice of ˛R (a sequence of the gi that is
compatible with ˛M and x). Then

�Ma .˛M˛Rx/ � �Ma .˛M˛R0 x/ D

M�1X
nD0

�a.T
n˛Nx/ � �a.T

n˛N0 x/

and noting that T n˛M˛Rx and T n˛M˛R0 x are within

D


M�n
diam.I /
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of one another, we have

�Ma .˛M˛Rx/ � �Ma .˛M˛R0 x/CD: diam.I / sup
y2I

jŒ�a�
0.y/j

M�1X
nD0

1


M�n
(5.5)

� �Ma .˛M˛R0 x/C �1.D; 
; I; �; a0/

for ja � ıj < a0 (as �a is roughly constant in a close to ı). Therefore

k�s;x;˛M k1 � exp.�1 C �Ma .˛M˛R0 x//
X�

˛R

exp.�Ra .˛
Rx//

� exp.�1 C �Ma .˛M˛R0 x//ŒL
R
a 1�.x/ D exp.�1 C �Ma .˛M˛R0 x//

by the normalization of La. We record this bound in the following.

Lemma 32. Given a0 small enough, there is �1 D �1.a0/ such that for all x and ˛M ,

k�s;x;˛M k1 � exp.�1 C �Ma .˛M˛R0 x//

for ja � ıj < a0. Here ˛R0 is any admissible choice of ˛R as in (5.2) compatible with ˛M

and x.

We are now in a position to use the main result of the Appendix, which for the conve-
nience of the reader we also state here.

Theorem 33 (Bourgain–Kontorovich–Magee, Appendix). There is a finite modulusQ0
and c > 0 such that when R � c log q, .q;Q0/ D 1, ja � ıj < a0 and ' 2 Eq , we have

k' ? �s;x;˛M k2 � Cq
�1=4Bk'k2;

given that
k�k1 < B:

Using Lemma 32, Theorem 33 now implies that when R � c log q for suitable c and
ja � ıj < a0, for any ' 2 Eq we have

(5.6) k' ? �s;x;˛M k2 � Cq
�1=4 exp.�1 C �Ma .˛M˛R0 x//k'k2:

Then if we use (5.3) we obtain

kŒLNs;qW �.x/kl2.�q/ �
X
˛M

kŒ'W;˛M ? �s;x;˛M �kl2.�q/ CO.kW kC1

�M /

� Cq�1=4 exp.�1/
X
˛M

exp.�Ma .˛M˛R0 x//k'W;˛M kl2.�q/

CO.kW kC1

�M /:

We have now chosen some ˛R0 and we are assuming the previous conditions on ja � ıj < a0.
Since trivially

k'W;˛M kl2.�q/ � kW k1
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we can continue to bound kŒLNs;qW �.x/k up to O.kW kC1

�M / by

Cq�1=4 exp.�1/kW k1
X
˛M

exp.�Ma .˛M˛R0 x//

� Cq�1=4 exp.�1/kW k1LNa Œ1�.T
M˛M˛R0 x/

D Cq�1=4 exp.�1/kW k1:

We have now proved, by choosing N > �10 log q so that there is room for the requisite
R and big enough M the following lemma.

Lemma 34. Let .q;Q0/ D 1. There are a0; q0; �10; � > 0 and 
 0 > 1 such that when
ja � ıj < a0, we have

kLNs;qW k1 � q
��
kW k1 C 


0�N
kW kC1

when N > �10 log q, q > q0, and W 2 Eq with kW kC1 <1.

5.3. Bounds for Lipschitz norms. In order to iterate Lemma 34 (this is our aim) we
also need bounds for

kLNs;qW kC1

under the same conditions as in Lemma 34. This amounts to estimating

sup
I

jŒLNs;qW �
0
j

and so we can proceed along similar lines as before. Indeed one calculates from (5.1) that

ŒLNs;qW �
0.x/ D

X
˛N

.Œ�Na C ib�
N � ı ˛N /0.x/ exp.Œ�Na C ib�

N �.˛Nx//cNq .˛
Nx/W.˛Nx/

C

X
˛N

exp.Œ�Na C ib�
N �.˛Nx//cNq .˛

Nx/ŒW ı ˛N �0.x/

using that cNq is locally constant. The second set of terms are bounded by

D


N

X
˛N

exp.�Na .˛
Nx//kW kC1

which can be bounded by

D


N
kW kC1L

N
a Œ1�.x/ D

D


N
kW kC1 :

So we have

(5.7) ŒLNs;qW �
0.x/ D †CO

�
D


N
kW kC1

�
;

where

† WD
X
˛N

.Œ�Na C ib�
N � ı ˛N /0.x/ exp.Œ�Na C ib�

N �.˛Nx//cNq .˛
Nx/W.˛Nx/:
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We can go through the same decoupling argument as before to get

† D
X
˛N

.Œ�Na C ib�
N � ı ˛N /0.x/ exp.Œ�Na C ib�

N �.˛Nx//cNq .˛
Nx/W.˛Mx0.i0//

CO

�
kW kC1

D


M
diam.I /

X
˛N

j.Œ�Na C ib�
N � ı ˛N /0.x/j exp.�Na .˛

Nx//

�
;

recalling i0 D i0.˛M /. Note that since there are constantsC1 and a0 such that when ja�ıj< a0
we have

jŒ�Na ı ˛
N �0.x/j � C1

for x 2 I (see for example [14, p. 138]), we have

(5.8) jŒŒ�Na C ib�
N � ı ˛N �0.x/j � C1 C jbj sup

I

j� 0j

N�1X
iD0

D


 i
� �11

for some �11 D �11.a0; b0/ when jbj � b0. Therefore we have the decoupled equation

† D
X
˛N

.Œ�Na C ib�
N � ı ˛N /0.x/ exp.Œ�Na C ib�

N �.˛Nx//cNq .˛
Nx/W.˛Mx0.i0//

COb0.kW kC1

�M /

valid when jbj < b0 and ja � ıj < a0 for some fixed a0. We denote the first of these two terms
by †0. Now similarly to before we define complex-valued measures

�0
s;x;˛M

D

X�

˛R

.Œ�Na C ib�
N � ı ˛M˛R/0.x/ exp.Œ�Na C ib�

N �.˛M˛Rx//ıcRq .˛Rx/�1 ;

'f;˛M D
X
g2�q

f .˛Mx0.i0//jgıgcMq .˛Mx0.i0//�1

for f 2 C 1.I I�q/, ˛M as in (5.2). Then the key observation is that

k†0k D





X
˛M

'W;˛M ? �0
s;x;˛M






l2.�q/

:

5.4. Bounds for �0

s;x;˛M
. We have

k�0
s;x;˛M

k1 � sup
I

jŒ�Na C ib�
N � ı ˛M˛R/0.x/j

X�

˛R

exp.�Na .˛
M˛Rx//:

By (5.8), �0
s;x;˛M

is dominated (in absolute value) by �11.b0/�s;x;˛M when jbj < b0. Thus
we can use our previous bound (5.6) to deduce that for the same choice of R D c log q and a
as before,

k†0k � Cq�1=4 exp.�1/�11kW k1
X
˛M

exp.�Ma .˛M˛R0 x//

� Cq�1=4 exp.�1/�11kW k1LNa Œ1�.˛
R
0 x/

� Cq�1=4 exp.�1/�11kW k1
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whenever ja�ıj< a0, jbj< b0 are the ranges specified by previous lemmas andN > �12 log q.
It now follows from (5.7) that with these conditions onN; q; a; b we have in light of Lemma 34
and the prior bound (5.7)

(5.9) kLNs;qW kC1 � �13q
��
kW k1 C �14


�N
kW kC1 C 


0�N
kW kC1

for some � > 0 when W 2 Eq .
By iterating the estimate (5.9) one obtains:

Lemma 35. For b0 > 0 given, there are a0, q0, � and � > 0 such that when ja�ıj < a0,
jbj < b0 and N D d� log qe with q > q0 and .q;Q0/ D 1 we have

kLnNs;qW kC1 � q
�n�

for all Eq-valued W 2 C 1.I IC�q / with kW kC1 D 1.

5.5. The new subspace structure and the proof of Part (1) of Theorem 4. We note
first the following consequence of Lemma 35.

Lemma 36. For all b0 > 0 there are 0 < � < 1, a0, q0 andC such that when ja�ıj< a0,
jbj � b0 and q0 < q, .q;Q0/ D 1, we have for all m > 0,

kLms;qf kC1 � Cq
C�mkf kC1 when f 2 Eq .

This is an easy exercise and the reader can get the details from [15, proof of Theorem 4.3].
Recall the new subspace structure of �q . For any q0jq there is a projection �q ! �q0 .

The kernel of this projection will be denoted �q.q0/, the congruence subgroup of level q0 in
�q . These have the property that if q00jq0 then �q.q0/ � �q.q00/. This groups give an orthogonal
decomposition of the right regular representation

(5.10) C�q D
M
q0jq

E
q
q0 ;

where Eqq0 consists of functions invariant under �q.q0/ but not invariant under �q.q00/ for
any q00 such that q00jq0, q00 ¤ q0. Then the Eq from before matches Eqq as defined here.

The decomposition (5.10) gives rise to a corresponding direct sum decomposition

C 1.I IC�q / D C 1.I /˚
M
1¤q0jq

C 1.I IE
q
q0/:

It is clear that the subspaces Eqq0 are invariant under the transfer operator Ls;q and taking
derivatives.

Note that if f 2 Eqq0 , then f descends to a well-defined function F on �q=�q.q0/ Š �q0
which is not invariant under any congruence subgroup of �q0 , hence in Eq

0

q0 . Also, if G is a
function in Eq

0

q0 , then G lifts through the previous isomorphism to a function g in Eqq0 for
any q0 such that q0jq. This gives rise to a map of Banach spaces

ˆq;q0 W C
1.I IE

q0

q0 /! C 1.I IE
q
q0/

for any q0jq with the property that

kˆq;q0.f /kC1 D

q
j�q.q0/jkf kC1 :



Magee, Oh and Winter, Uniform congruence counting for Schottky semigroups in SL2.Z/ 127

This map is equivariant under the transfer operators in the sense that

ˆq;q0 ŒLs;q0f � D Ls;qˆq;q0 Œf �

for any f 2 Eq
0

q0 . In other words, the action of Ls;q on a summand in (5.10) is determined
by the action of the corresponding transfer operator on Eq

0

q0 for some q0jq. We decompose
f 2 C 1.I IC�q / as

f D f1 C
X
1¤q0jq

fq0

with fq0 2 E
q
q0 . If we assume that q has no proper divisors � q0 from Lemma 36, then for

any m, with all norms C 1 norms,

kLms;qf � L
m
s;qf1k �

X
q0<q0jq

kLms;qfq0k

D

X
q0<q0jq

q
#�q.q0/kLms;q0ˆ

�1
q;q0fq0k

� C
X

q0<q0jq

q
#�q.q0/.q0/C�mkˆ�1q;q0fq0k

� CqC�m
X
1¤q0jq

kfq0k:

This bound can be changed to

kLms;qf � L
m
s;qf1k � C

0qC
0

�mkf k

for some C 0 D C 0.�; b0/ by noting that individually

kfq0k � kf k

and that any number q has�� q
� divisors for any � > 0. The analogous estimates hold for the

unnormalized Ls;q (by perturbation theory and (4.1)). That is, by possibly adjusting constants
slightly and decreasing a0,

kLms;qf � L
m
s;qf1k � C

0qC
0

�mkf k:

In particular, part (1) of Theorem 4 now follows from the special case that f1 D 0 so that
f 2 C 1.I IC�q 	 1/.

A. Thermodynamic expansion to arbitrary moduli

By Jean Bourgain at Princeton, Alex Kontorovich at New Brunswick
and Michael Magee at New Haven

A.1. Statements. We import all the notation from the rest of the paper. We are led to
study the measure � on G D SL2.q/ given by

(A.1) � D
X�

˛R

exp.Œ�Na C ib�
N �.˛M˛Rx//ıcRq .˛Rx/;
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this differs from the�s;x;˛M of equation (5.4) by taking inverses of group elements. This makes
spectral bounds for the right action of �s;x;˛M and those for the left action of � equivalent.
Here N DM CR, x 2 I ,

˛M D gi1gi2 : : : giM

is fixed, and the starred summation means that it is restricted to those

˛R D giMC1giMC2 : : : giN

where the sequence gi1 ; : : : ; giN is admissible and ˛R is a well-defined local branch of T �R

near x. In practice this may rule out one possible value for iN . See Section 5.1 for more details.
Also recall the “new subspace” Eq � l2.G/ defined in Section 5.1 and the constant a0 coming
from Proposition 28.

Our goal in this Appendix is to prove the following:

Theorem A.1. There are a finite modulus Q0 and a constant c > 0 such that when
R � c log q, .q;Q0/ D 1, ja � ıj < a0 and ' 2 Eq , we have

(A.2) k� � 'k2 � Cq
�1=4Bk'k2;

given that
k�k1 < B:

Recall that in Section 5.1 we chose for each ˛M an i0 D i0.˛M / such that ˛M is a well-
defined local branch of T �M on Ii0 . We also chose for each i an x.i/ in Ii . More generally,
for each admissible composition ˛ D gi1 : : : gij of semigroup elements we now choose an
i.˛/ such that ˛ is a well-defined branch of T �j on Ii.˛/. This choice depends only on ij .
Let o D x.i.˛R//.

To begin, we define a measure � by

(A.3) � � exp.�Ma .˛Mx.i0///�1;

where �1 is the measure given by

�1 �
X�

˛R

exp.�Ra .˛
Ro//ıcRq .˛Ro/:

Lemma A.2. We have

(A.4) j�j � C �:

Proof. Use the “contraction property” in inequality (5.5) and argue as in the proof of
Lemma 32.

We will now manipulate �1. We assume that R can be decomposed further as

(A.5) R D R0L;

with L to be chosen later (a sufficiently large constant independent of R0 and q). Now split ˛R

as
˛R D ˛LR0˛

L
R0�1 : : : ˛

L
2 ˛

L
1 ;
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where the ˛L
k

are branches of T �L given by

˛LR0 D giMC1 : : : giMCL ; ˛LR0�1 D giMCLC1 : : : giMC2L

and so on. For each 0 � p � R0 � 1 we also split

˛LR0�p D ˛
L�2
R0�p˛

.2/
R0�p;

where ˛L�2R0�p D giMCpLC1 : : : giMC.pC1/L�2 and ˛.2/R0�p D giMC.pC1/L�1giMC.pC1/L . The rea-
son for isolating two indices will become clear later.

Write out

�Ra .˛
Ro/ D

R�1X
iD0

�a.T
i˛Ro/(A.6)

D

R0�1X
iD0

L�1X
`D0

�a.T
iLC`˛Ro/

D

R0�1X
iD0

L�1X
`D0

�a.T
iLC`˛LR0�i˛

L
R0�i�1 : : : ˛

L
1 o/

D

R0�1X
iD0

�La .˛
L
R0�i˛

L
R0�i�1 : : : ˛

L
1 .o//:

We now perform decoupling term by term in the above. We will use the shorthand

˛Lj � ˛Lj ˛
L
j�1 : : : ˛

L
1 :

For j � 2, we compare each term in (A.6) of the form

�La .˛
Lj .o//

to
�La .˛

L
j ˛

L�2
j�1 x.i.˛

L�2
j�1 ///:

This gives

�La .˛
Lj .o// D �La .˛

L
j ˛

L�2
j�1 x.i.˛

L�2
j�1 ///(A.7)

CO
�
sup jŒ�La ı ˛

L
j �
0
jd.˛L�2j�1 x.i.˛

L�2
j�1 //; ˛

L�2
j�1 ˛

.2/
j�1 : : : ˛

L
1 o/

�
D �La .˛

L
j ˛

L�2
j�1 x.i.˛

L�2
j�1 ///CO.


�.L�2//;

where we used the bound (4.3) of Proposition 28, valid when a is within a0 of ı.
We will also use the formula

(A.8) ıcRq .˛Ro/ D ıcLq .˛Lo/ � ıcLq .˛2Lo/ � ıcLq .˛3Lo/ � � � � � ıcLq .˛R
0Lo/:

Then combining (A.6) and (A.8), we write

�1 D
X�

˛L1 ;˛
L�2
2 ;:::;˛L�2

R0

X�

˛
.2/
2 ;:::;˛

.2/

R0

exp.�Ra .˛
Ro///ıcRq .˛Ro/(A.9)

D

X�

˛L1 ;˛
L�2
2 ;:::;˛L�2

R0

X�

˛
.2/
2 ;:::;˛

.2/

R0

exp

 
R0X
jD1

�La .˛
jL.o//

!

� ıcLq .˛Lo/ � ıcLq .˛2Lo/ � ıcLq .˛3Lo/ � � � � � ıcLq .˛R
0Lo/:
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Starred summation means that the outer sum is restricted to be compatible with ˛M and x,
and given the collection of ˛L�2

k
from the outer sum, we then restrict to those ˛.2/

k
that form

admissible compositions overall. We now decouple, replacing each term of the form

e�
L
a .˛

jL.o//
7! e�

L
a .˛

L
j
˛L�2
j�1

x.i.˛L�2
j�1

///
� ǰ

with j � 2, at a cost of a multiplicative factor of exp.c
�L/; here c is proportional to the
implied constant of (A.7). When j D 1, no replacement is performed, and we set

ˇ1 � e
�La .˛

L
1 o/:

Inserting this into (A.9) gives

�1 �
X�

˛L�21 ;˛L�22 ;:::;˛L�2
R0

X�

˛
.2/
1

ˇ1ıcLq .˛Lo/ � exp.c
�L/R
0�1(A.10)

�

 X�

˛
.2/
2 ;:::;˛

.2/

R0

R0Y
jD2

ǰ ıcLq .˛2Lo/ � ıcLq .˛3Lo/ � � � � � ıcLq .˛R
0Lo/

!
:

Note that, although ǰ depends on all of the indices in ˛Lj ˛
L�2
j�1 , because ˛L�2j and ˛L�2j�1 are

fixed in the outermost sum, we can and will treat ǰ as a function of ˛.2/j .
We claim that each term cLq .˛

jLo/ also only depends on one ˛.2/j . This is because
we have

˛jL D gk1 : : : gkL˛
.j�1/L

for some choice of gkm , and hence for whatever o is chosen, we have

cLq .˛
jLo/ D cq.gkL˛

.j�1/Lo/cq.gkL�1gkL˛
.j�1/Lo/ : : : cq.gk1 : : : gkL˛

.j�1/Lo/;

see the Dictionary of Table 1, Section 3. From the definition of cq we have

cq.gkmo
0/ D gkm mod q

for any o0 2 I , where gkm is a local inverse branch of T near o0. Thus

(A.11) cLq .˛
jLo/ D gkL : : : gk1 mod q:

Here

(A.12) gkL�1gkL D ˛
.2/
j :

This means we may distribute the convolution and product over the sum, writing (A.10) as

�1 � exp.c
�L/R
0�1

X�

˛L�21 ;˛L�22 ;:::;˛L�2
R0

�X�

˛
.2/
1

ˇ1ıcLq .˛Lo/

�
(A.13)

�

�X�

˛
.2/
2

ˇ2ıcLq .˛2Lo/

�
� � � � �

�X�

˛
.2/

R0

ˇR0ıcLq .˛R
0Lo/

�
:

We give each convolved term in (A.13) a name, defining, for each j � 1, the measure

(A.14) �j D �
.˛L�2
j

;˛L�2
j�1

/

j �

X�

˛
.2/

j

ǰ ıcLq .˛jLo/:
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Note this parameterization makes sense since the admissibility of ˛.2/j depends only on ˛L�2j

and ˛L�2j�1 . We have thus proved the following:

Proposition A.3. We have

(A.15) �1 � exp.c
�L/R
0�1

X�

˛L�21 ;˛L�22 ;:::;˛L�2
R0

�1 � �2 � � � � � �R0 :

Next we observe that each of the measures �j is nearly flat, in that their coefficients
in (A.14) differ by constants:

Lemma A.4. There is some c0 > 0 such that for any L > 0, for each j � 1 and any
˛.2/j and ˛.2/j

0
, we have

ˇ0j

ǰ
� c0:

Proof. The first L � 2 terms of ǰ and ˇ0j agree, so we again use the “contraction prop-
erty” from (5.5).

Since the measures �j are nearly flat, we may now apply the expansion result in [6].

Theorem A.5. Assume that L is sufficiently large (depending only on �). Then for
' 2 L20.G/, we have

(A.16) k�j � 'k2 � .1 � C1/k�j k1k'k2:

Here C1 > 0 depends on � but not on q.

Proof of Theorem A.5. Recalling (A.14), we can write

(A.17) k�j � 'k
2
2 D h

eA'; 'i;
where eA acts by convolution with the measure

A �
X�

˛
.2/

j
;˛
.2/

j

0

ǰ ˇ
0
j ıcLq .˛jLo/cLq ..˛jL/0o/�1 :

Using the notation of (A.11) and (A.12), note that

cLq .˛
jLo/cLq ..˛

jL/0o/�1 D ˛
.2/
j � gkL�1 : : : gk1.˛

.2/
j

0
� gkL�1 : : : gk1/

�1

D ˛
.2/
j .˛

.2/
j

0
/�1:

We will now appeal to the following spectral gap modulo q for the group generated by
the coefficients ˛.2/j .˛.2/j

0
/�1.

Proposition A.6 (Spectral gap). There are some modulus Q0 and some � > 0 such
that for all indices j , for all q coprime to Q0 and for all � 2 `20.G/ with k�k2 D 1 there is
some pair ˛.2/j ; ˛.2/j

0
such that

(A.18) k˛
.2/
j .˛

.2/
j

0
/�1 � � � �k2 > �:
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The statement of Proposition A.6 is well known to be equivalent to other uniform spec-
tral gap properties. The uniform spectral gap is known to exist in the current setting for the
following reasons.

Continued fractions setting. Here we need the products ˛.2/j .˛.2/j
0
/�1 to generate

a group with Zariski closure SL2. Since all sequences of gij are admissible, the ˛.2/j appearing
in (A.14) do not depend on j . Recall that in the continued fractions setting, each gi is already
a product of two generators

�
0 1
1 a

��
0 1
1 b

�
. It is easy to see then that the ˛.2/j generate a Zariski

dense subgroup whenever the alphabet A of �A has at least two letters, in fact, it would have
been enough to take for the ˛.2/ blocks of length 1. On the other hand, we do need suffi-
ciently many of the

�
0 1
1 a

�
to be involved as the products

�
0 1
1 a

��
0 1
1 b

��1
D
�
1 0
a�b 1

�
are lower-

triangular. Proposition A.6 then follows from the expansion result of Bourgain and Varjú [6].
In the cases that the ˛.2/j .˛.2/j

0
/�1 generate all of SL2.Z/, Proposition A.6 is a well-known

consequence of Selberg’s “3/16 Theorem” from [18].

Schottky semigroup/group setting. Note that this setting contains the case that � is a
Schottky group as in [4]. Again, it will be enough to show that the ˛.2/j .˛.2/j

0
/�1 generate a

Zariski dense subgroup of SL2.Z/. This is the reason why we needed to make ˛.2/j a block of
length 2. Indeed, suppose that the Schottky semigroup is generated by at least two Schottky
generators and let g; h be two of these generators. For example, if ˛L�2j ends in g while ˛L�2j�1

starts with g�1, then the summation in (A.14) contains ˛.2/j of the form

gh; gh�1; hg�1; hh; h�1g�1; h�1h�1:

It is then easy to see that the ˛.2/j .˛.2/j
0
/�1 generate a Zariski dense group (if � has more

than two generators, this is also clear). We may then apply the Bourgain–Varjú expansion
result [6] to obtain a spectral gap for the group generated by ˛.2/j .˛.2/j

0
/�1. Now, this group and

its generator set (and hence also its expansion constant � as in (A.18)) depend on ˛L�2j and
˛L�2j�1 (or rather just their starting/ending letters). But as � is finitely generated, only a finite
number of groups/generators arise in this way, and we simply take � to be the worst one,
yielding Proposition A.6.

We now resume our proof of Theorem A.5. To this end, assume without loss of generality
that k'k2 D 1 and let ˛.2/j ; ˛.2/j

0
be the pair provided by Proposition A.6 applied to ', and � the

provided constant. Since there is a uniform bound on the size of the support of A, Lemma A.4
gives

(A.19) ǰˇ
0
j � kAk1

with an uniform positive implied constant (here ǰˇ
0
j is the coefficient of ˛.2/j .˛

.2/0

j /�1 in A).
It follows by routine arguments from (A.19) together with (A.18) for ', with the associated �,
that the operator norm of eA acting on `20.G/ is keAkop � .1 � �

0/kAk1 for some �0 depending
on �. The resulting bound on (A.17) establishes Theorem A.5, since kAk1 D k�j k21.

Corollary 37. Assume that L is sufficiently large (depending only on �). Then there is
some C2 > 0 also depending only on � so that, for any ' 2 L20.G/, we have

(A.20) k�1 � 'k2 � .1 � C2/
R
k�1k1k'k2:



Magee, Oh and Winter, Uniform congruence counting for Schottky semigroups in SL2.Z/ 133

Proof. Beginning with (A.15), apply (A.16) R0 times to get

k�1 � 'k2 � exp.c
�L/R
0�1

X�

˛L�11 ;:::;˛L�1
R0

.1 � C1/
R0

R0Y
jD1

k�j k1k'k2:

Applying contraction yet again gives

X�

˛L�11 ;:::;˛L�1
R0

R0Y
jD1

k�j k1 � exp.c
�L/R
0�1
k�1k1;

whence (A.20) follows on taking L large enough and recalling (A.5).

Returning to the measure � in (A.3), we have from (A.20) that

(A.21) k� � 'k2 � .1 � C2/
R
k�k1k'k2:

To conclude Theorem A.1, we need the following:

Lemma A.7. Let � be a complex distribution on the group G D SL2.q/ and assume
that j�j � C�. Let Eq � L20.G/ be the subspace defined in Section 5.1, and let A W Eq ! Eq
be the operator acting by convolution with �. Then

kAk � C 0
�
jGjke� � �k22

q

�1=4
:

Here e�.g/ D �.g�1/.
Proof. Note that the operator A�A is self-adjoint, positive, and acts by convolution

with e� � �. Let � be an eigenvalue of A�A. Since A acts on Eq , Frobenius gives that � has
multiplicity mult.�/ at least Cq. We then have that

�2mult.�/ � trŒ.A�A/2� D
X
g2G

h.A�A/2ıg ; ıgi D
X
g2G

ke� � � � ıgk22
D jGjke� � �k22 � C 4jGjke� � �k22:

The claim follows, as kAk D max� �1=2.

We apply the lemma to � in (A.1) using (A.4), giving

(A.22) k� � 'k2 � Cq
1=2
ke� � �k1=22 :

It remains to estimate the � convolution.

Proposition A.8. Choosing R to be of size C log q for suitable C , we have that

(A.23) ke� � �k2 � 2 k�k21
jGj1=2

:
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Proof. Let

 � ıe �
1

jGj
1G 2 L20.G/;

and note that k k2 < 1. Then

ke� � �k2 D ke� � � � ıek2 � ke� � � � � 1

jGj
1G
�
k2 C ke� � � �  k2

�
k�k21

jGj1=2
C k�k1k� �  k2;

where we used the triangle inequality and Cauchy–Schwarz. Since  2 L20.G/, we apply
inequality (A.21), giving

k� �  k2 < .1 � C2/
R
k�k1 <

k�k1

jGj1=2

by a suitable choice of R D C log q. The claim follows immediately.

Finally, we give a proof of Theorem A.1.

Proof of Theorem A.1. Insert (A.23) into (A.22) and use (A.4) and jGj > Cq3. Clearly
(A.2) holds with B D Ck�k1.
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